2024
|
Lai, Wenhui; Lee, Jong Hak; Shi, Lu; Liu, Yuqing; Pu, Yanhui; Ong, Yong Kang; Limpo, Carlos; Xiong, Ting; Rao, Yifan; Sow, Chorng Haur; Ozyilmaz, Barbaros High mechanical strength Si anode synthesis with interlayer bonded expanded graphite structure for lithium-ion batteries Journal Article JOURNAL OF ENERGY CHEMISTRY, 93 , pp. 253-263, 2024, ISSN: 2095-4956. Abstract | Links | BibTeX @article{ISI:001203104900001,
title = {High mechanical strength Si anode synthesis with interlayer bonded expanded graphite structure for lithium-ion batteries},
author = {Wenhui Lai and Jong Hak Lee and Lu Shi and Yuqing Liu and Yanhui Pu and Yong Kang Ong and Carlos Limpo and Ting Xiong and Yifan Rao and Chorng Haur Sow and Barbaros Ozyilmaz},
doi = {10.1016/j.jechem.2024.02.021},
times_cited = {0},
issn = {2095-4956},
year = {2024},
date = {2024-06-01},
journal = {JOURNAL OF ENERGY CHEMISTRY},
volume = {93},
pages = {253-263},
publisher = {ELSEVIER},
address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS},
abstract = {Despite advancements in silicon -based anodes for high -capacity lithium -ion batteries, their widespread commercial adoption is still hindered by significant volume expansion during cycling, especially at high active mass loadings crucial for practical use. The root of these challenges lies in the mechanical instability of the material, which subsequently leads to the structural failure of the electrode. Here, we present a novel synthesis of a composite combining expanded graphite and silicon nanoparticles. This composite features a unique interlayer-bonded graphite structure, achieved through the application of a modified spark plasma sintering method. Notably, this innovative structure not only facilitates efficient ion and electron transport but also provides exceptional mechanical strength (Vickers hardness: up to 658 MPa, Young's modulus: 11.6 GPa). This strength effectively accommodates silicon expansion, resulting in an impressive areal capacity of 2.9 mA h cm -2 (736 mA h g-1) and a steady cycle life (93% after 100 cycles). Such outstanding performance is paired with features appropriate for large-scale industrial production of silicon batteries, such as active mass loading of at least 3.9 mg cm -2, a high -tap density electrode material of 1.68 g cm -3 (secondary clusters: 1.12 g cm -3), and a production yield of up to 1 kg per day. (c) 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Despite advancements in silicon -based anodes for high -capacity lithium -ion batteries, their widespread commercial adoption is still hindered by significant volume expansion during cycling, especially at high active mass loadings crucial for practical use. The root of these challenges lies in the mechanical instability of the material, which subsequently leads to the structural failure of the electrode. Here, we present a novel synthesis of a composite combining expanded graphite and silicon nanoparticles. This composite features a unique interlayer-bonded graphite structure, achieved through the application of a modified spark plasma sintering method. Notably, this innovative structure not only facilitates efficient ion and electron transport but also provides exceptional mechanical strength (Vickers hardness: up to 658 MPa, Young's modulus: 11.6 GPa). This strength effectively accommodates silicon expansion, resulting in an impressive areal capacity of 2.9 mA h cm -2 (736 mA h g-1) and a steady cycle life (93% after 100 cycles). Such outstanding performance is paired with features appropriate for large-scale industrial production of silicon batteries, such as active mass loading of at least 3.9 mg cm -2, a high -tap density electrode material of 1.68 g cm -3 (secondary clusters: 1.12 g cm -3), and a production yield of up to 1 kg per day. (c) 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved. |
Wang, Zhe; Kalathingal, Vijith; Trushin, Maxim; Liu, Jiawei; Wang, Junyong; Guo, Yongxin; Ozyilmaz, Barbaros; Nijhuis, Christian A; Eda, Goki Upconversion electroluminescence in 2D semiconductors integrated with plasmonic tunnel junctions Journal Article NATURE NANOTECHNOLOGY, 2024, ISSN: 1748-3387. Abstract | Links | BibTeX @article{ISI:001205711600001,
title = {Upconversion electroluminescence in 2D semiconductors integrated with plasmonic tunnel junctions},
author = {Zhe Wang and Vijith Kalathingal and Maxim Trushin and Jiawei Liu and Junyong Wang and Yongxin Guo and Barbaros Ozyilmaz and Christian A Nijhuis and Goki Eda},
doi = {10.1038/s41565-024-01650-0},
times_cited = {0},
issn = {1748-3387},
year = {2024},
date = {2024-04-19},
journal = {NATURE NANOTECHNOLOGY},
publisher = {NATURE PORTFOLIO},
address = {HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY},
abstract = {Plasmonic tunnel junctions are a unique electroluminescent system in which light emission occurs via an interplay between tunnelling electrons and plasmonic fields instead of electron-hole recombination as in conventional light-emitting diodes. It was previously shown that placing luminescent molecules in the tunneling pathway of nanoscopic tunnel junctions results in peculiar upconversion electroluminescence where the energy of emitted photons exceeds that of excitation electrons. Here we report the observation of upconversion electroluminescence in macroscopic van der Waals plasmonic tunnel junctions comprising gold and few-layer graphene electrodes separated by a similar to 2-nm-thick hexagonal boron nitride tunnel barrier and a monolayer semiconductor. We find that the semiconductor ground exciton emission is triggered at excitation electron energies lower than the semiconductor optical gap. Interestingly, this upconversion is reached in devices operating at a low conductance (<10(-6) S) and low power density regime (<10(2) W cm(-2)), defying explanation through existing proposed mechanisms. By examining the scaling relationship between plasmonic and excitonic emission intensities, we elucidate the role of inelastic electron tunnelling dipoles that induce optically forbidden transitions in the few-layer graphene electrode and ultrafast hot carrier transfer across the van der Waals interface.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Plasmonic tunnel junctions are a unique electroluminescent system in which light emission occurs via an interplay between tunnelling electrons and plasmonic fields instead of electron-hole recombination as in conventional light-emitting diodes. It was previously shown that placing luminescent molecules in the tunneling pathway of nanoscopic tunnel junctions results in peculiar upconversion electroluminescence where the energy of emitted photons exceeds that of excitation electrons. Here we report the observation of upconversion electroluminescence in macroscopic van der Waals plasmonic tunnel junctions comprising gold and few-layer graphene electrodes separated by a similar to 2-nm-thick hexagonal boron nitride tunnel barrier and a monolayer semiconductor. We find that the semiconductor ground exciton emission is triggered at excitation electron energies lower than the semiconductor optical gap. Interestingly, this upconversion is reached in devices operating at a low conductance (<10(-6) S) and low power density regime (<10(2) W cm(-2)), defying explanation through existing proposed mechanisms. By examining the scaling relationship between plasmonic and excitonic emission intensities, we elucidate the role of inelastic electron tunnelling dipoles that induce optically forbidden transitions in the few-layer graphene electrode and ultrafast hot carrier transfer across the van der Waals interface. |
Kriven, Waltraud M; Leonelli, Cristina; Provis, John L; Boccaccini, Aldo R; Attwell, Cyril; Ducman, Vilma S; Ferone, Claudio; Rossignol, Sylvie; Luukkonen, Tero; van Deventer, Jannie S J; Emiliano, Jose V; Lombardi, Jerome E Why geopolymers and alkali-activated materials are key components of a sustainable world: A perspective contribution Journal Article JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024, ISSN: 0002-7820. Abstract | Links | BibTeX @article{ISI:001198252700001,
title = {Why geopolymers and alkali-activated materials are key components of a sustainable world: A perspective contribution},
author = {Waltraud M Kriven and Cristina Leonelli and John L Provis and Aldo R Boccaccini and Cyril Attwell and Vilma S Ducman and Claudio Ferone and Sylvie Rossignol and Tero Luukkonen and Jannie S J van Deventer and Jose V Emiliano and Jerome E Lombardi},
doi = {10.1111/jace.19828},
times_cited = {0},
issn = {0002-7820},
year = {2024},
date = {2024-04-08},
journal = {JOURNAL OF THE AMERICAN CERAMIC SOCIETY},
publisher = {WILEY},
address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA},
abstract = {This perspective article delves into the transformative potential of alkali-activated materials, acid-activated materials, and geopolymers in mitigating climate change and market challenges. To harness the benefits of these materials, a comprehensive strategy is proposed. This strategy aims to integrate these materials into existing construction regulations, facilitate certification, and promote market access. Emphasizing research and innovation, the article advocates for, increased funding to refine the chemistry and production of these materials, prioritizing low-cost alternatives and local waste materials. Collaboration between academia and industry is encouraged to expedite technological advances and broaden applications. This article also underscores the need to develop economic and business models emphasizing the long-term benefits of these materials, including lower life-cycle costs and reduced environmental impact. Incentivizing adoption through financial mechanisms like tax credits and subsidies is suggested. The strategy also includes scaling up production technology, fostering industrial collaboration for commercial viability, and developing global supply chains. Educational programs for professionals and regulators are recommended to enhance awareness and adoption. Additionally, comprehensive life-cycle assessments are proposed to demonstrate environmental benefits. The strategy culminates in expanding the applications of these materials beyond construction, fostering international collaboration for knowledge sharing, and thus positioning these materials as essential for sustainable construction and climate change mitigation.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
This perspective article delves into the transformative potential of alkali-activated materials, acid-activated materials, and geopolymers in mitigating climate change and market challenges. To harness the benefits of these materials, a comprehensive strategy is proposed. This strategy aims to integrate these materials into existing construction regulations, facilitate certification, and promote market access. Emphasizing research and innovation, the article advocates for, increased funding to refine the chemistry and production of these materials, prioritizing low-cost alternatives and local waste materials. Collaboration between academia and industry is encouraged to expedite technological advances and broaden applications. This article also underscores the need to develop economic and business models emphasizing the long-term benefits of these materials, including lower life-cycle costs and reduced environmental impact. Incentivizing adoption through financial mechanisms like tax credits and subsidies is suggested. The strategy also includes scaling up production technology, fostering industrial collaboration for commercial viability, and developing global supply chains. Educational programs for professionals and regulators are recommended to enhance awareness and adoption. Additionally, comprehensive life-cycle assessments are proposed to demonstrate environmental benefits. The strategy culminates in expanding the applications of these materials beyond construction, fostering international collaboration for knowledge sharing, and thus positioning these materials as essential for sustainable construction and climate change mitigation. |
Lin, Fanrong; Liu, Jiawei; Lu, Huan; Liu, Xin; Liu, Ying; Hu, Zhili; Lyu, Pin; Zhang, Zhuhua; Martin, Jens; Guo, Wanlin; Liu, Yanpeng Evolution of Graphene Dirac Fermions in Electric Double-Layer Transistors with a Soft Barrier Journal Article ADVANCED FUNCTIONAL MATERIALS, 2024, ISSN: 1616-301X. Abstract | Links | BibTeX @article{ISI:001195156600001,
title = {Evolution of Graphene Dirac Fermions in Electric Double-Layer Transistors with a Soft Barrier},
author = {Fanrong Lin and Jiawei Liu and Huan Lu and Xin Liu and Ying Liu and Zhili Hu and Pin Lyu and Zhuhua Zhang and Jens Martin and Wanlin Guo and Yanpeng Liu},
doi = {10.1002/adfm.202400553},
times_cited = {0},
issn = {1616-301X},
year = {2024},
date = {2024-04-02},
journal = {ADVANCED FUNCTIONAL MATERIALS},
publisher = {WILEY-V C H VERLAG GMBH},
address = {POSTFACH 101161, 69451 WEINHEIM, GERMANY},
abstract = {The interface and dielectric environment of graphene transistors are of great importance to commercial circuit integrations. The tangling bond in oxide-based dielectric severely lagged the carrier mobility while the 2D dielectric layer (for instance, hexagonal boron nitride) unavoidably hastened complicated condensed physics even at room temperature. Herein, multilayer black phosphorus (BP) a versatile and widely-tunable dielectric candidate for manifesting graphene fermions is demonstrated. Because of hetero-interfacial charge redistributions, a vertical electric double-layer between the bottom BP layer and top graphene spontaneously forms with the central BP layer as a soft barrier. Under dual-gate modulation, abnormal step-like evolution of Dirac fermions and charge-transfer quantum Hall effect arises while the intrinsic Dirac behavior of graphene is preserved, ascribing to the gate-tunable charge redistributions of dielectric BP layer. Moreover, the electric double-layer transistors apply equally well to bilayer graphene with similar Dirac behavior but an enhanced interfacial charge interference. The findings not only create a new avenue to manipulate the fermions by assembling graphene with narrow-gapped 2D layered materials but also promote electric double-layer transistors as a new build block to design multifunctional devices.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
The interface and dielectric environment of graphene transistors are of great importance to commercial circuit integrations. The tangling bond in oxide-based dielectric severely lagged the carrier mobility while the 2D dielectric layer (for instance, hexagonal boron nitride) unavoidably hastened complicated condensed physics even at room temperature. Herein, multilayer black phosphorus (BP) a versatile and widely-tunable dielectric candidate for manifesting graphene fermions is demonstrated. Because of hetero-interfacial charge redistributions, a vertical electric double-layer between the bottom BP layer and top graphene spontaneously forms with the central BP layer as a soft barrier. Under dual-gate modulation, abnormal step-like evolution of Dirac fermions and charge-transfer quantum Hall effect arises while the intrinsic Dirac behavior of graphene is preserved, ascribing to the gate-tunable charge redistributions of dielectric BP layer. Moreover, the electric double-layer transistors apply equally well to bilayer graphene with similar Dirac behavior but an enhanced interfacial charge interference. The findings not only create a new avenue to manipulate the fermions by assembling graphene with narrow-gapped 2D layered materials but also promote electric double-layer transistors as a new build block to design multifunctional devices. |
Tan, Hui Li; Donato, Katarzyna Z; Costa, Mariana C F; Carvalho, Alexandra; Trushin, Maxim; Ng, Pei Rou; Yau, Xin Hui; Koon, Gavin K W; Tolasz, Jakub; Nemeckova, Zuzana; Ecorchard, Petra; Donato, Ricardo K; Neto, Antonio Castro H Fibrillation of Pristine 2D Materials by 2D-Confined Electrolytes Journal Article ADVANCED FUNCTIONAL MATERIALS, 2024, ISSN: 1616-301X. Abstract | Links | BibTeX @article{ISI:001186210500001,
title = {Fibrillation of Pristine 2D Materials by 2D-Confined Electrolytes},
author = {Hui Li Tan and Katarzyna Z Donato and Mariana C F Costa and Alexandra Carvalho and Maxim Trushin and Pei Rou Ng and Xin Hui Yau and Gavin K W Koon and Jakub Tolasz and Zuzana Nemeckova and Petra Ecorchard and Ricardo K Donato and Antonio Castro H Neto},
doi = {10.1002/adfm.202315038},
times_cited = {0},
issn = {1616-301X},
year = {2024},
date = {2024-03-18},
journal = {ADVANCED FUNCTIONAL MATERIALS},
publisher = {WILEY-V C H VERLAG GMBH},
address = {POSTFACH 101161, 69451 WEINHEIM, GERMANY},
abstract = {2D materials are solid microscopic flakes with a-few-Angstrom thickness possessing some of the largest surface-to-volume ratios known. Altering their conformation state from a flat flake to a scroll or fiber offers a synergistic association of properties arising from 2D and 1D nanomaterials. However, a combination of the long-range electrostatic and short-range solvation forces produces an interlayer repulsion that has to be overcome, making scrolling 2D materials without disrupting the pristine structure a challenging task. Herein, a facile method is presented to alter the 2D materials' inter-layer interactions by confining organic salts onto their basal area, forming 2D-confined electrolytes. The confined electrolytes produce local charge inhomogeneities, which can conjugate across the interlayer gap, binding the two surfaces. This allows the 2D-confined electrolytes to behave as polyelectrolytes within a higher dimensional order (2D -> 1D) and form robust nanofibers with distinct electronic properties. The method is not material-specific and the resulting fibers are tightly bound even though the crystal structure of the basal plane remains unaltered.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2D materials are solid microscopic flakes with a-few-Angstrom thickness possessing some of the largest surface-to-volume ratios known. Altering their conformation state from a flat flake to a scroll or fiber offers a synergistic association of properties arising from 2D and 1D nanomaterials. However, a combination of the long-range electrostatic and short-range solvation forces produces an interlayer repulsion that has to be overcome, making scrolling 2D materials without disrupting the pristine structure a challenging task. Herein, a facile method is presented to alter the 2D materials' inter-layer interactions by confining organic salts onto their basal area, forming 2D-confined electrolytes. The confined electrolytes produce local charge inhomogeneities, which can conjugate across the interlayer gap, binding the two surfaces. This allows the 2D-confined electrolytes to behave as polyelectrolytes within a higher dimensional order (2D -> 1D) and form robust nanofibers with distinct electronic properties. The method is not material-specific and the resulting fibers are tightly bound even though the crystal structure of the basal plane remains unaltered. |