CA2DM researchers transformed recovered carbon black (rCB) into dazzling multicolour fluorescence and visual display

CA2DM researchers transformed recovered carbon black (rCB), a very economical and abundance source of material, into dazzling multicolour fluorescence and visual display, by way of a scanning focused laser treatment. This laser-initiated process is both straightforward and versatile, catering to both micro- and macro-scopic patterning with the sample in ambient or helium environment.

The observed phenomenon is attributed to both chemical and structural induced colouration of rCB powder. Chemically, carbon infusion of oxidised metal occurs when photothermal reaction takes place in ambient. After laser modification with the sample in helium environment, the powder not only fluoresces due to sulphur impurities, control annealing of these powders results in formation of periodic arrangements of carbon nanoparticles.

The periodicity of these arrangement falls within the range of visible wavelength, hence contributing to the visually observable rainbow coloured rCB flakes. The patterned sample is also transferrable using PDMS stamps. This in turn broadens the application of this material in flexible electronic devices/displays.

Photocurrent measurements show most significant enhancement under yellow light illumination. Furthermore, in the presence of an applied potential, the fluorescence detected from the sample can easily be switched off. All in all, they present a simple process to add multiple functionalities to a material that is both inexpensive and sustainable.”

https://link.springer.com/article/10.1007/s12274-018-2239-x

Tailoring a large area pseudo-magnetic field in graphene by placing it on a crystal with different symmetry

Figure 1: (Left) The lattice mismatch between the monolayer graphene (black) on multilayer black phosphorous (blue) generates PMF on the graphene layer. (Right) The spatial distribution and intensity of the PMF can be tailored by changing the rotation angle between the graphene and black phosphorous. (Image: NUS)

NUS researchers have discovered a simple and effective method to produce a large area pseudo-magnetic field (PMF) on graphene, and demonstrated how it can be tuned with desired spatial distribution and intensity for data storage and logic applications (“Tailoring sample-wide pseudo-magnetic fields on a graphene-black phosphorus heterostructure“).

The field of electronics focuses on how to control and exploit the properties of electrons. To study or modify the properties of these electrons at the quantum regime, a magnetic field has to be applied. Continue Reading

Scientists solve 65-year-old open theoretical problem on electron interactions

New discovery published in Science explains what happens during the phase transition in Dirac materials, paving the way for engineering advanced electronics that perform significantly faster

Shaffique Adam, who holds joint appointments in Centre for Advanced 2D Materials and the Department of Physics at the National University of Singapore, is the lead author for a recent work that describes a model for electron interaction in Dirac materials, a class of materials that includes graphene and topological insulators, solving a 65-year-old open theoretical problem in the process. The discovery will help scientists better understand electron interaction in new materials, paving the way for developing advanced electronics such as faster processors. The work was published in the peer-reviewed academic journal Science on 10 August 2018.

Continue Reading

Graphene enters the stratosphere

Graphene’s usefulness on Earth has already been established in the last decade. It is now an opportune time to expand its prospects for use in space applications – an area touted as being the most challenging to modern technology – and shift the paradigm of materials science. Space is the final frontier for graphene research, and I believe this is the first time that graphene has entered the stratosphere,”
– Professor Antonio Castro Neto

On 30 June 2018, the spacecraft was launched over the Mojave Desert in the United States. CA2DM has teamed up with US-based aerospace company Boreal Space to test the properties of graphene after it has been launched into the stratosphere. The results could provide insights into how graphene could be used for space and satellite technologies.

Continue Reading

Visit to National Academy of Sciences of Ukraine and the Bogoliubov Institute of Theoretical Physics

Prof. Castro Neto, director of CA2DM, visited the National Academy of Sciences of Ukraine and the Bogoliubov Institute of Theoretical Physics, in Kiev, in March 2018, in order to establish scientific collaborations and recruit highly qualified Scientists for NUS. During this visit he met with distinguished Ukrainian Scientists such as Prof. Anton Naumovets, first Vice President of the academy. Continue Reading

CA2DM-led research team develops cost effective technique for mass production of high-quality graphene

Novel method uses 50 times less solvent than conventional methods

CA2DM-led research team have developed an economical and industrially viable strategy to produce graphene. The new technique addresses the long-standing challenge of an efficient process for large-scale production of graphene, and paves the way for sustainable synthesis of the material.

Continue Reading

Singapore jumped into 3rd place in the 2018 Bloomberg Innovation Index

Singapore, innovation nation.

Singapore raised 3 positions to the third position worldwide in the Bloomberg ranking in innovation thanks to its solid investment in science and technology, research and development. This result clearly shows that the government’s policies to create a truly smart nation is paying off. If this state of affairs is maintained it can lead eventually to a situation when Singapore’s high tech industrial park will drive the economy as a whole and add to Singapore’s traditional strength in commerce and trade, making it less vulnerable to fluctuations in the world economy with the creation of more highly skilled jobs with higher salaries and opportunities for its population.

– Professor Antonio Castro Neto

Read full news here:
https://www.bloomberg.com/news/articles/2018-01-22/south-korea-tops-global-innovation-ranking-again-as-u-s-falls

Carlsberg’s Sustainability Program

Carlsberg, one the largest brewer companies in the world and famous for a longstanding historical commitment to research and development, is launching an exciting and ambitious program on sustainability. CA2DM is proud to support this program as it reflects CA2DM’s philosophy of developing eco-friendly breakthrough technology with graphene and 2D materials. If you are interested in doing research in this important and exciting area of technology, please, check: https://career2.successfactors.eu/sfcareer/jobreqcareerpvt?jobId=661&company=carlsbergg&username=&st=381120FF99B18D08C374554209F6DD1934CD036F

CA2DM Director among world’s most impactful researchers 2017

Thirteen NUS researchers have been named among the world’s most highly cited, based on Clarivate Analytics’ 2017 Highly Cited Researchers report released on 15 November. This is also the fourth consecutive year NUS has fielded the most number of highly cited researchers among research institutions in Singapore.

Clarivate Analytics’ citation analysis has shown that these researchers consistently win peer approval from around the globe for their remarkable research in their respective fields, including chemistry, computer science, engineering, materials science, mathematics, physics, psychology and social sciences.  This was determined by the extent their papers have supported, influenced, inspired and challenged other researchers internationally.

Professor Ho Teck Hua, NUS Deputy President (Research & Technology) and Tan Chin Tuan Centennial Professor, said that the University is proud of the achievements of the 13 NUS researchers that have helped raise Singapore’s global standing in research excellence, adding that it is a strong recognition of the University’s broad base of research capabilities.

Continue Reading