Slaven Garaj
Degree: PhD
Position: Assistant Professor
Affiliation: NUS – Department of Physics
Research Type: Experiment
Office: S13-02-04
Email: slaven@nus.edu.sg
Contact: (65) 6516 2164
CA2DM Publications:
2024 |
Chung, Jing-Yang; Yuan, Yanwen; Mishra, Tara P; Joseph, Chithralekha; Canepa, Pieremanuele; Ranjan, Pranay; Sadki, El Hadi S; Gradecak, Silvija; Garaj, Slaven Structure and exfoliation mechanism of two-dimensional boron nanosheets Journal Article NATURE COMMUNICATIONS, 15 (1), 2024. @article{ISI:001274069500021, title = {Structure and exfoliation mechanism of two-dimensional boron nanosheets}, author = {Jing-Yang Chung and Yanwen Yuan and Tara P Mishra and Chithralekha Joseph and Pieremanuele Canepa and Pranay Ranjan and El Hadi S Sadki and Silvija Gradecak and Slaven Garaj}, doi = {10.1038/s41467-024-49974-8}, times_cited = {1}, year = {2024}, date = {2024-07-20}, journal = {NATURE COMMUNICATIONS}, volume = {15}, number = {1}, publisher = {NATURE PORTFOLIO}, address = {HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY}, abstract = {Exfoliation of two-dimensional (2D) nanosheets from three-dimensional (3D) non-layered, non-van der Waals crystals represents an emerging strategy for materials engineering that could significantly increase the library of 2D materials. Yet, the exfoliation mechanism in which nanosheets are derived from crystals that are not intrinsically layered remains unclear. Here, we show that planar defects in the starting 3D boron material promote the exfoliation of 2D boron sheets-by combining liquid-phase exfoliation, aberration-corrected scanning transmission electron microscopy, Raman spectroscopy, and density functional theory calculations. We demonstrate that 2D boron nanosheets consist of a planar arrangement of icosahedral sub-units cleaved along the {001} planes of beta-rhombohedral boron. Correspondingly, intrinsic stacking faults in 3D boron form parallel layers of faulted planes in the same orientation as the exfoliated nanosheets, reducing the {001} cleavage energy. Planar defects represent a potential engineerable pathway for exfoliating 2D sheets from 3D boron and, more broadly, the other covalently bonded materials.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Exfoliation of two-dimensional (2D) nanosheets from three-dimensional (3D) non-layered, non-van der Waals crystals represents an emerging strategy for materials engineering that could significantly increase the library of 2D materials. Yet, the exfoliation mechanism in which nanosheets are derived from crystals that are not intrinsically layered remains unclear. Here, we show that planar defects in the starting 3D boron material promote the exfoliation of 2D boron sheets-by combining liquid-phase exfoliation, aberration-corrected scanning transmission electron microscopy, Raman spectroscopy, and density functional theory calculations. We demonstrate that 2D boron nanosheets consist of a planar arrangement of icosahedral sub-units cleaved along the {001} planes of beta-rhombohedral boron. Correspondingly, intrinsic stacking faults in 3D boron form parallel layers of faulted planes in the same orientation as the exfoliated nanosheets, reducing the {001} cleavage energy. Planar defects represent a potential engineerable pathway for exfoliating 2D sheets from 3D boron and, more broadly, the other covalently bonded materials. |
Ronceray, Nathan; Spina, Massimo; Chou, Vanessa Hui Yin; Lim, Chwee Teck; Geim, Andre K; Garaj, Slaven Elastocapillarity-driven 2D nano-switches enable zeptoliter-scale liquid encapsulation Journal Article NATURE COMMUNICATIONS, 15 (1), 2024. @article{ISI:001158425400020, title = {Elastocapillarity-driven 2D nano-switches enable zeptoliter-scale liquid encapsulation}, author = {Nathan Ronceray and Massimo Spina and Vanessa Hui Yin Chou and Chwee Teck Lim and Andre K Geim and Slaven Garaj}, doi = {10.1038/s41467-023-44200-3}, times_cited = {5}, year = {2024}, date = {2024-01-02}, journal = {NATURE COMMUNICATIONS}, volume = {15}, number = {1}, publisher = {NATURE PORTFOLIO}, address = {HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY}, abstract = {Biological nanostructures change their shape and function in response to external stimuli, and significant efforts have been made to design artificial biomimicking devices operating on similar principles. In this work we demonstrate a programmable nanofluidic switch, driven by elastocapillarity, and based on nanochannels built fromlayered two-dimensional nanomaterials possessing atomically smooth surfaces and exceptional mechanical properties. We explore operational modes of the nanoswitch and develop a theoretical framework to explain the phenomenon. By predicting the switchingreversibility phase diagram-based on material, interfacial and wetting properties, as well as the geometry of the nanofluidic circuit-we rationally design switchable nano-capsules capable of enclosing zeptoliter volumes of liquid, as small as the volumes enclosed in viruses. The nanoswitch will find useful application as an active element in integrated nanofluidic circuitry and could be used to explore nanoconfined chemistry and biochemistry, or be incorporated into shape-programmable materials.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Biological nanostructures change their shape and function in response to external stimuli, and significant efforts have been made to design artificial biomimicking devices operating on similar principles. In this work we demonstrate a programmable nanofluidic switch, driven by elastocapillarity, and based on nanochannels built fromlayered two-dimensional nanomaterials possessing atomically smooth surfaces and exceptional mechanical properties. We explore operational modes of the nanoswitch and develop a theoretical framework to explain the phenomenon. By predicting the switchingreversibility phase diagram-based on material, interfacial and wetting properties, as well as the geometry of the nanofluidic circuit-we rationally design switchable nano-capsules capable of enclosing zeptoliter volumes of liquid, as small as the volumes enclosed in viruses. The nanoswitch will find useful application as an active element in integrated nanofluidic circuitry and could be used to explore nanoconfined chemistry and biochemistry, or be incorporated into shape-programmable materials. |