Konstantin Novoselov
Degree: PhD
Affiliation: NUS – Department of Materials Science and Engineering
Research Type: Experiment
Office: EA-04-10
Email: kostya@nus.edu.sg
Contact: (65) 6601 1396
Website: http://www.condmat.physics.manchester.ac.uk/people/academic/novoselov/
CA2DM Publications:
2025 |
Fu, Deyi; Liu, Jiawei; Hou, Fuchen; Chang, Xiao; Qu, Tingyu; Felisaz, Johan; Krishnaswamy, Gunasheel Kauwtilyaa; Grebenchuk, Sergey; Jie, Yuang; Watanabe, Kenji; Taniguchi, Takashi; Pereira, Vitor M; Novoselov, Kostya S; Koperski, Maciej; Yakovlev, Nikolai L; Soumyanarayanan, Anjan; Avsar, Ahmet; Yazyev, Oleg V; Lin, Junhao; Ozyilmaz, Barbaros Electric field-tunable ferromagnetism in a van der Waals semiconductor up to room temperature Journal Article NATURE COMMUNICATIONS, 16 (1), 2025. @article{ISI:001620530800035, title = {Electric field-tunable ferromagnetism in a van der Waals semiconductor up to room temperature}, author = {Deyi Fu and Jiawei Liu and Fuchen Hou and Xiao Chang and Tingyu Qu and Johan Felisaz and Gunasheel Kauwtilyaa Krishnaswamy and Sergey Grebenchuk and Yuang Jie and Kenji Watanabe and Takashi Taniguchi and Vitor M Pereira and Kostya S Novoselov and Maciej Koperski and Nikolai L Yakovlev and Anjan Soumyanarayanan and Ahmet Avsar and Oleg V Yazyev and Junhao Lin and Barbaros Ozyilmaz}, doi = {10.1038/s41467-025-59961-2}, times_cited = {0}, year = {2025}, date = {2025-11-20}, journal = {NATURE COMMUNICATIONS}, volume = {16}, number = {1}, publisher = {NATURE PORTFOLIO}, address = {HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY}, abstract = {Ferromagnetic semiconductors, coupling charge transport and magnetism via electrical means, show great promise for spin-based logic devices. Despite decades of efforts to achieve such co-functionality, maintaining ferromagnetic order at room temperature remains elusive. Here, we address this long-standing challenge by implanting dilute Co atoms into few-layer black phosphorus through atomically-thin boron nitride diffusion barrier. Our Co-doped black phosphorus-based devices exhibit ferromagnetism up to room temperature while preserving its high mobility (similar to 1000cm(2)V(-1)s(-1)) and semiconducting characteristics. By incorporating ferromagnetic Co-doped black phosphorus into magnetic tunnel junction devices, we demonstrate a large tunnelling magnetoresistance that extends up to room temperature. This study presents a new approach to engineering ferromagnetic ordering in otherwise nonmagnetic materials, thereby expanding the repertoire and applications of magnetic semiconductors envisioned thus far.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Ferromagnetic semiconductors, coupling charge transport and magnetism via electrical means, show great promise for spin-based logic devices. Despite decades of efforts to achieve such co-functionality, maintaining ferromagnetic order at room temperature remains elusive. Here, we address this long-standing challenge by implanting dilute Co atoms into few-layer black phosphorus through atomically-thin boron nitride diffusion barrier. Our Co-doped black phosphorus-based devices exhibit ferromagnetism up to room temperature while preserving its high mobility (similar to 1000cm(2)V(-1)s(-1)) and semiconducting characteristics. By incorporating ferromagnetic Co-doped black phosphorus into magnetic tunnel junction devices, we demonstrate a large tunnelling magnetoresistance that extends up to room temperature. This study presents a new approach to engineering ferromagnetic ordering in otherwise nonmagnetic materials, thereby expanding the repertoire and applications of magnetic semiconductors envisioned thus far. |
Li, Huanxin; Chen, Haotian; Pang, Boyi; Zhang, Jincan; Luo, Bingcheng; Silva, Ravi S P; Wang, Yi-Chi; Zhao, Siyu; Shearing, Paul R; Robinson, James B; Novoselov, Kostya S Van-der-Waals-forces-modulated graphene-P-phenyl-graphene carbon allotropes Journal Article NATURE COMMUNICATIONS, 16 (1), 2025. @article{ISI:001616374600008, title = {\textit{Van}-\textit{der}-\textit{Waals}-\textit{forces}-modulated graphene-P-phenyl-graphene carbon allotropes}, author = {Huanxin Li and Haotian Chen and Boyi Pang and Jincan Zhang and Bingcheng Luo and Ravi S P Silva and Yi-Chi Wang and Siyu Zhao and Paul R Shearing and James B Robinson and Kostya S Novoselov}, doi = {10.1038/s41467-025-64971-1}, times_cited = {0}, year = {2025}, date = {2025-11-14}, journal = {NATURE COMMUNICATIONS}, volume = {16}, number = {1}, publisher = {NATURE PORTFOLIO}, address = {HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY}, abstract = {Graphene has received much attention due to its monoatomic, unique two-dimensional structure, which results in remarkable mechanical, physical, and electrical properties. However, synthesizing high-quality graphene-based composites with high conductivity and ionic mobility remains challenging. Here, we report an allotrope to the nanocarbon family, Graphene-P-phenyl-Graphene, synthesized by inserting pi-pi-conjugated p-phenyls between graphene layers and connecting them via C-C sigma bonds. Graphene-P-phenyl-Graphene is thermally and dynamically stable, as verified by density functional theory and molecular dynamics, and can be produced at kilogram scale. The p-phenyl bridges swell the layer spacing from similar to 0.34 to similar to 0.56 nm, reducing van der Waals forces and enhancing electron delocalization. Electrons in these separated graphene layers benefit from low mass and efficient 3D screening of charge scattering, resulting in high Hall mobility (10,000-13,000 cm(2) V-1 s(-1)) in freestanding films. The expanded spacing also enables decoupling of layer electrons and rapid ion storage and transport-even for large ions. For example, potassium-ion batteries using Graphene-P-phenyl-Graphene exhibit high reversible capacity, long-term stability, and high charge-discharge rates. Graphene-P-phenyl-Graphene holds promise for large-scale, portable, high-performance electronics with energy storage capabilities.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Graphene has received much attention due to its monoatomic, unique two-dimensional structure, which results in remarkable mechanical, physical, and electrical properties. However, synthesizing high-quality graphene-based composites with high conductivity and ionic mobility remains challenging. Here, we report an allotrope to the nanocarbon family, Graphene-P-phenyl-Graphene, synthesized by inserting pi-pi-conjugated p-phenyls between graphene layers and connecting them via C-C sigma bonds. Graphene-P-phenyl-Graphene is thermally and dynamically stable, as verified by density functional theory and molecular dynamics, and can be produced at kilogram scale. The p-phenyl bridges swell the layer spacing from similar to 0.34 to similar to 0.56 nm, reducing van der Waals forces and enhancing electron delocalization. Electrons in these separated graphene layers benefit from low mass and efficient 3D screening of charge scattering, resulting in high Hall mobility (10,000-13,000 cm(2) V-1 s(-1)) in freestanding films. The expanded spacing also enables decoupling of layer electrons and rapid ion storage and transport-even for large ions. For example, potassium-ion batteries using Graphene-P-phenyl-Graphene exhibit high reversible capacity, long-term stability, and high charge-discharge rates. Graphene-P-phenyl-Graphene holds promise for large-scale, portable, high-performance electronics with energy storage capabilities. |
Tewari, Chetna; Rawat, Kundan Singh; Kim, Youngnam; Arya, Tanuja; Dhali, Sunil; Rana, Sravendra; Andreeva, Daria V; Ozyilmaz, Barbaros; Mahfouz, Remi; Qari, Nada; Jung, Yong Chae; Sahoo, Nanda Gopal; Novoselov, Kostya S Functional nanocarbons from waste plastics for energy storage applications Journal Article RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 226 , 2025, ISSN: 1364-0321. @article{ISI:001614303300001, title = {Functional nanocarbons from waste plastics for energy storage applications}, author = {Chetna Tewari and Kundan Singh Rawat and Youngnam Kim and Tanuja Arya and Sunil Dhali and Sravendra Rana and Daria V Andreeva and Barbaros Ozyilmaz and Remi Mahfouz and Nada Qari and Yong Chae Jung and Nanda Gopal Sahoo and Kostya S Novoselov}, doi = {10.1016/j.rser.2025.116443}, times_cited = {0}, issn = {1364-0321}, year = {2025}, date = {2025-11-05}, journal = {RENEWABLE & SUSTAINABLE ENERGY REVIEWS}, volume = {226}, publisher = {PERGAMON-ELSEVIER SCIENCE LTD}, address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND}, abstract = {The mismanagement of waste plastic could lead to significant environmental challenge, underscoring the urgent need for adopting innovative strategies that will address its management and utilization. At the same time, the growing demand for sustainable energy storage materials necessitates the exploration of resourceful solutions including advanced plastic-based materials. Addressing these dual concerns, this review examines the transformation of waste plastics into functional nanocarbons (FNCs) for energy-related applications. This review provides a comprehensive analysis of zero-to-three-dimensional FNCs derived from waste plastics, detailing synthesis techniques such as chemical vapor deposition, pyrolysis/catalytic pyrolysis, and hydrothermal carbonization, along with the underlying mechanisms. Key factors influencing the conversion process-including pressure, temperature, and catalytic systems-are thoroughly examined. Discussions on morphology and surface chemistry shed light on strategies to optimize material properties for specific applications. Special attention is given to the performance of FNCs in supercapacitors and batteries, using benchmarks such as electrical conductivity, specific surface area, and cycling stability to evaluate their suitability for energy storage. Additionally, the review incorporates a circular economic perspective, offering insights into how upcycling waste plastics into FNCs can contribute to a more sustainable future. It identifies critical research gaps, evaluates the environmental impacts of these processes, and highlights promising opportunities for innovation. By fostering interdisciplinary collaboration and bridging knowledge gaps, this review aims to inspire advancements in both waste plastic upcycling and energy technologies, ultimately contributing to sustainable solutions for urgent environmental and energy challenges.}, keywords = {}, pubstate = {published}, tppubtype = {article} } The mismanagement of waste plastic could lead to significant environmental challenge, underscoring the urgent need for adopting innovative strategies that will address its management and utilization. At the same time, the growing demand for sustainable energy storage materials necessitates the exploration of resourceful solutions including advanced plastic-based materials. Addressing these dual concerns, this review examines the transformation of waste plastics into functional nanocarbons (FNCs) for energy-related applications. This review provides a comprehensive analysis of zero-to-three-dimensional FNCs derived from waste plastics, detailing synthesis techniques such as chemical vapor deposition, pyrolysis/catalytic pyrolysis, and hydrothermal carbonization, along with the underlying mechanisms. Key factors influencing the conversion process-including pressure, temperature, and catalytic systems-are thoroughly examined. Discussions on morphology and surface chemistry shed light on strategies to optimize material properties for specific applications. Special attention is given to the performance of FNCs in supercapacitors and batteries, using benchmarks such as electrical conductivity, specific surface area, and cycling stability to evaluate their suitability for energy storage. Additionally, the review incorporates a circular economic perspective, offering insights into how upcycling waste plastics into FNCs can contribute to a more sustainable future. It identifies critical research gaps, evaluates the environmental impacts of these processes, and highlights promising opportunities for innovation. By fostering interdisciplinary collaboration and bridging knowledge gaps, this review aims to inspire advancements in both waste plastic upcycling and energy technologies, ultimately contributing to sustainable solutions for urgent environmental and energy challenges. |
Ren, Tianhua; del aguila, Andres Granados; Chen, Zhaolong; Xu, Qianhui; Zhou, Xuehong; Duan, Rui; Grzeszczyk, Magdalena; Gong, Xiao; Watanabe, Kenji; Taniguchi, Takashi; Novoselov, Kostya S; Koperski, Maciej; Sun, Handong Van der Waals photonic integrated circuit with coherent light generation Journal Article NATURE COMMUNICATIONS, 16 (1), 2025. @article{ISI:001523451200028, title = {Van der Waals photonic integrated circuit with coherent light generation}, author = {Tianhua Ren and Andres Granados del aguila and Zhaolong Chen and Qianhui Xu and Xuehong Zhou and Rui Duan and Magdalena Grzeszczyk and Xiao Gong and Kenji Watanabe and Takashi Taniguchi and Kostya S Novoselov and Maciej Koperski and Handong Sun}, doi = {10.1038/s41467-025-60778-2}, times_cited = {1}, year = {2025}, date = {2025-07-01}, journal = {NATURE COMMUNICATIONS}, volume = {16}, number = {1}, publisher = {NATURE PORTFOLIO}, address = {HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY}, abstract = {Two-dimensional semiconductors hold great potential as coherent light sources for photonic integrated circuits. However, the conventional integration of two-dimensional materials onto silicon photonics introduces significant structural and optoelectronic drawbacks, hindering the practical realization of coherent photonic circuits. Here, we introduce the concept of a van der Waals photonic integrated circuit, which is a complete on-chip optical system fabricated entirely from a van der Waals heterostructure. By combining multifunctional two-dimensional materials into a single heterostructure, we realize a fully functional photonic circuitry capable of benchtop coherent light generation, propagation, transmission, and modulation via a silicon back gate. The monolithic approach to heterostructure circuitry supports the effective integration of various photonic components based on two-dimensional materials with stable electro-optic interconnections. The coherence of light emission is systematically verified by second-order correlation experiments at room temperature, showing a clear power-dependent transition to a Poissonian regime. Our work establishes a pathway for coherent van der Waals photonics incorporated with standard silicon manufacturing processes.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Two-dimensional semiconductors hold great potential as coherent light sources for photonic integrated circuits. However, the conventional integration of two-dimensional materials onto silicon photonics introduces significant structural and optoelectronic drawbacks, hindering the practical realization of coherent photonic circuits. Here, we introduce the concept of a van der Waals photonic integrated circuit, which is a complete on-chip optical system fabricated entirely from a van der Waals heterostructure. By combining multifunctional two-dimensional materials into a single heterostructure, we realize a fully functional photonic circuitry capable of benchtop coherent light generation, propagation, transmission, and modulation via a silicon back gate. The monolithic approach to heterostructure circuitry supports the effective integration of various photonic components based on two-dimensional materials with stable electro-optic interconnections. The coherence of light emission is systematically verified by second-order correlation experiments at room temperature, showing a clear power-dependent transition to a Poissonian regime. Our work establishes a pathway for coherent van der Waals photonics incorporated with standard silicon manufacturing processes. |
Zhang, Hongji; Grebenko, Artem K; Iakoubovskii, Konstantin V; Zhang, Hanning; Yamaletdinov, Ruslan; Makarova, Anna; Fedorov, Alexander; Rejaul, S K; Shivajirao, Ranjith; Tong, Zheng Jue; Grebenchuk, Sergey; Karadeniz, Ugur; Shi, Lu; Vyalikh, Denis V; He, Ya; Starkov, Andrei; Alekseeva, Alena A; Tee, Chuan Chu; Orofeo, Carlo Mendoza; Lin, Junhao; Suenaga, Kazutomo; Bosman, Michel; Koperski, Maciej; Weber, Bent; Novoselov, Kostya S; Yazyev, Oleg V; Toh, Chee-Tat; Ozyilmaz, Barbaros Superior Adhesion of Monolayer Amorphous Carbon to Copper Journal Article ADVANCED MATERIALS, 37 (32), 2025, ISSN: 0935-9648. @article{ISI:001498039100001, title = {Superior Adhesion of Monolayer Amorphous Carbon to Copper}, author = {Hongji Zhang and Artem K Grebenko and Konstantin V Iakoubovskii and Hanning Zhang and Ruslan Yamaletdinov and Anna Makarova and Alexander Fedorov and S K Rejaul and Ranjith Shivajirao and Zheng Jue Tong and Sergey Grebenchuk and Ugur Karadeniz and Lu Shi and Denis V Vyalikh and Ya He and Andrei Starkov and Alena A Alekseeva and Chuan Chu Tee and Carlo Mendoza Orofeo and Junhao Lin and Kazutomo Suenaga and Michel Bosman and Maciej Koperski and Bent Weber and Kostya S Novoselov and Oleg V Yazyev and Chee-Tat Toh and Barbaros Ozyilmaz}, doi = {10.1002/adma.202419112}, times_cited = {2}, issn = {0935-9648}, year = {2025}, date = {2025-05-29}, journal = {ADVANCED MATERIALS}, volume = {37}, number = {32}, publisher = {WILEY-V C H VERLAG GMBH}, address = {POSTFACH 101161, 69451 WEINHEIM, GERMANY}, abstract = {The single-atom thickness of graphene holds great potential for device scaling, but its effectiveness as a thin metal-ion diffusion barrier in microelectronics and a corrosion barrier for plasmonic devices is compromised by weak van der Waals interactions with copper (Cu), leading to delamination issues. In contrast, monolayer amorphous carbon (MAC), a recently reported single-atom-thick carbon film with a disordered sp2 hybridized structure, demonstrates superior adhesion properties. This study reveals that MAC exhibits an adhesion energy of 85 J m-2 on Cu, which is 13 times greater than that of graphene. This exceptional adhesion is attributed to the formation of covalent-like Cu & horbar;C bonds while preserving its sp2 structure, as evidenced by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Density functional theory (DFT) calculations further elucidate that the corrugated structure of MAC facilitates the hybridization of C 2pz orbitals with Cu 4s and 3dz2 orbitals, promoting strong bonding. These insights indicate that the amorphous structure of MAC significantly enhances adhesion while preserving its elemental composition, providing a pathway to improve the mechanical reliability and performance of two-dimensional (2D) materials on metal substrates in various technological applications.}, keywords = {}, pubstate = {published}, tppubtype = {article} } The single-atom thickness of graphene holds great potential for device scaling, but its effectiveness as a thin metal-ion diffusion barrier in microelectronics and a corrosion barrier for plasmonic devices is compromised by weak van der Waals interactions with copper (Cu), leading to delamination issues. In contrast, monolayer amorphous carbon (MAC), a recently reported single-atom-thick carbon film with a disordered sp2 hybridized structure, demonstrates superior adhesion properties. This study reveals that MAC exhibits an adhesion energy of 85 J m-2 on Cu, which is 13 times greater than that of graphene. This exceptional adhesion is attributed to the formation of covalent-like Cu & horbar;C bonds while preserving its sp2 structure, as evidenced by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Density functional theory (DFT) calculations further elucidate that the corrugated structure of MAC facilitates the hybridization of C 2pz orbitals with Cu 4s and 3dz2 orbitals, promoting strong bonding. These insights indicate that the amorphous structure of MAC significantly enhances adhesion while preserving its elemental composition, providing a pathway to improve the mechanical reliability and performance of two-dimensional (2D) materials on metal substrates in various technological applications. |
Li, Tianbo; Lin, Min; Dale, Stephen G; Shi, Zekun; Neto, Castro A H; Novoselov, Kostya S; Vignale, Giovanni Diagonalization without Diagonalization: A Direct Optimization Approach for Solid-State Density Functional Theory Journal Article JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 21 (9), pp. 4730-4741, 2025, ISSN: 1549-9618. @article{ISI:001478048300001, title = {Diagonalization without Diagonalization: A Direct Optimization Approach for Solid-State Density Functional Theory}, author = {Tianbo Li and Min Lin and Stephen G Dale and Zekun Shi and Castro A H Neto and Kostya S Novoselov and Giovanni Vignale}, doi = {10.1021/acs.jctc.4c01551}, times_cited = {1}, issn = {1549-9618}, year = {2025}, date = {2025-04-28}, journal = {JOURNAL OF CHEMICAL THEORY AND COMPUTATION}, volume = {21}, number = {9}, pages = {4730-4741}, publisher = {AMER CHEMICAL SOC}, address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA}, abstract = {We present a novel approach to address the challenges of variable occupation numbers in direct optimization of density functional theory (DFT). By parametrizing both the eigenfunctions and the occupation matrix, our method minimizes the free energy with respect to these parameters. As the stationary conditions require the occupation matrix and the Kohn-Sham Hamiltonian to be simultaneously diagonalizable, this leads to the concept of "self-diagonalization," where, by assuming a diagonal occupation matrix without loss of generality, the Hamiltonian matrix naturally becomes diagonal at stationary points. Our method incorporates physical constraints on both the eigenfunctions and the occupations into the parametrization, transforming the constrained optimization into an fully differentiable unconstrained problem, which is solvable via gradient descent. Implemented in JAX, our method was tested on aluminum and silicon, confirming that it achieves efficient self-diagonalization, produces the correct Fermi-Dirac distribution of the occupation numbers and yields band structures consistent with those obtained with SCF eigensolver methods in Quantum Espresso.}, keywords = {}, pubstate = {published}, tppubtype = {article} } We present a novel approach to address the challenges of variable occupation numbers in direct optimization of density functional theory (DFT). By parametrizing both the eigenfunctions and the occupation matrix, our method minimizes the free energy with respect to these parameters. As the stationary conditions require the occupation matrix and the Kohn-Sham Hamiltonian to be simultaneously diagonalizable, this leads to the concept of "self-diagonalization," where, by assuming a diagonal occupation matrix without loss of generality, the Hamiltonian matrix naturally becomes diagonal at stationary points. Our method incorporates physical constraints on both the eigenfunctions and the occupations into the parametrization, transforming the constrained optimization into an fully differentiable unconstrained problem, which is solvable via gradient descent. Implemented in JAX, our method was tested on aluminum and silicon, confirming that it achieves efficient self-diagonalization, produces the correct Fermi-Dirac distribution of the occupation numbers and yields band structures consistent with those obtained with SCF eigensolver methods in Quantum Espresso. |
2024 |
Ratwani, Chirag R; Donato, Katarzyna Z; Grebenchuk, Sergey; Mija, Alice; Novoselov, Kostya S; Abdelkader, Amr M Enhanced Self-Healing in Dual Network Entangled Hydrogels by Macromolecular Architecture and Alignent of Surface Functionalized hBN Nanosheets Journal Article ADVANCED MATERIALS INTERFACES, 12 (6), 2024, ISSN: 2196-7350. @article{ISI:001357180100001, title = {Enhanced Self-Healing in Dual Network Entangled Hydrogels by Macromolecular Architecture and Alignent of Surface Functionalized hBN Nanosheets}, author = {Chirag R Ratwani and Katarzyna Z Donato and Sergey Grebenchuk and Alice Mija and Kostya S Novoselov and Amr M Abdelkader}, doi = {10.1002/admi.202400691}, times_cited = {6}, issn = {2196-7350}, year = {2024}, date = {2024-10-31}, journal = {ADVANCED MATERIALS INTERFACES}, volume = {12}, number = {6}, publisher = {WILEY}, address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, abstract = {Hydrogels have shown great promise as versatile biomaterials for various applications, ranging from tissue engineering to flexible electronics. Among their notable attributes, self-healing capabilities stand out as a significant advantage, facilitating autonomous repair of mechanical damage and restoration of structural integrity. In this work, a dual network macromolecular biphasic composite is designed using an anisotropic structure which facilitates unidirectional chain diffusion and imparts superior self-healing and mechanical properties. The resulting nanocomposite demonstrates significantly higher self-healing efficiency (92%) compared to traditional polyvinyl alcohol (PVA) hydrogels, while also improving the tensile strength and elastic modulus, which typically compete with each other in soft materials. This improvement is attributed to enhanced barrier properties within the matrix due to the alignment of surface-functionalized 2D hBN nanosheets along the biopolymer scaffold. The insights gained from this research can be leveraged to develop advanced self-healing materials by using 2D nanofillers as "safety barriers" to define the movement of polymeric chains.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Hydrogels have shown great promise as versatile biomaterials for various applications, ranging from tissue engineering to flexible electronics. Among their notable attributes, self-healing capabilities stand out as a significant advantage, facilitating autonomous repair of mechanical damage and restoration of structural integrity. In this work, a dual network macromolecular biphasic composite is designed using an anisotropic structure which facilitates unidirectional chain diffusion and imparts superior self-healing and mechanical properties. The resulting nanocomposite demonstrates significantly higher self-healing efficiency (92%) compared to traditional polyvinyl alcohol (PVA) hydrogels, while also improving the tensile strength and elastic modulus, which typically compete with each other in soft materials. This improvement is attributed to enhanced barrier properties within the matrix due to the alignment of surface-functionalized 2D hBN nanosheets along the biopolymer scaffold. The insights gained from this research can be leveraged to develop advanced self-healing materials by using 2D nanofillers as "safety barriers" to define the movement of polymeric chains. |
Qiu, Zhizhan; Han, Yixuan; Noori, Keian; Chen, Zhaolong; Kashchenko, Mikhail; Lin, Li; Olsen, Thomas; Li, Jing; Fang, Hanyan; Lyu, Pin; Telychko, Mykola; Gu, Xingyu; Adam, Shaffique; Quek, Su Ying; Rodin, Aleksandr; Neto, Castro A H; Novoselov, Kostya S; Lu, Jiong Evidence for electron-hole crystals in a Mott insulator Journal Article 13 NATURE MATERIALS, 23 (8), 2024, ISSN: 1476-1122. @article{ISI:001237790900002, title = {Evidence for electron-hole crystals in a Mott insulator}, author = {Zhizhan Qiu and Yixuan Han and Keian Noori and Zhaolong Chen and Mikhail Kashchenko and Li Lin and Thomas Olsen and Jing Li and Hanyan Fang and Pin Lyu and Mykola Telychko and Xingyu Gu and Shaffique Adam and Su Ying Quek and Aleksandr Rodin and Castro A H Neto and Kostya S Novoselov and Jiong Lu}, doi = {10.1038/s41563-024-01910-3}, times_cited = {13}, issn = {1476-1122}, year = {2024}, date = {2024-06-03}, journal = {NATURE MATERIALS}, volume = {23}, number = {8}, publisher = {NATURE PORTFOLIO}, address = {HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY}, abstract = {The coexistence of correlated electron and hole crystals enables the realization of quantum excitonic states, capable of hosting counterflow superfluidity and topological orders with long-range quantum entanglement. Here we report evidence for imbalanced electron-hole crystals in a doped Mott insulator, namely, alpha-RuCl3, through gate-tunable non-invasive van der Waals doping from graphene. Real-space imaging via scanning tunnelling microscopy reveals two distinct charge orderings at the lower and upper Hubbard band energies, whose origin is attributed to the correlation-driven honeycomb hole crystal composed of hole-rich Ru sites and rotational-symmetry-breaking paired electron crystal composed of electron-rich Ru-Ru bonds, respectively. Moreover, a gate-induced transition of electron-hole crystals is directly visualized, further corroborating their nature as correlation-driven charge crystals. The realization and atom-resolved visualization of imbalanced electron-hole crystals in a doped Mott insulator opens new doors in the search for correlated bosonic states within strongly correlated materials.}, keywords = {}, pubstate = {published}, tppubtype = {article} } The coexistence of correlated electron and hole crystals enables the realization of quantum excitonic states, capable of hosting counterflow superfluidity and topological orders with long-range quantum entanglement. Here we report evidence for imbalanced electron-hole crystals in a doped Mott insulator, namely, alpha-RuCl3, through gate-tunable non-invasive van der Waals doping from graphene. Real-space imaging via scanning tunnelling microscopy reveals two distinct charge orderings at the lower and upper Hubbard band energies, whose origin is attributed to the correlation-driven honeycomb hole crystal composed of hole-rich Ru sites and rotational-symmetry-breaking paired electron crystal composed of electron-rich Ru-Ru bonds, respectively. Moreover, a gate-induced transition of electron-hole crystals is directly visualized, further corroborating their nature as correlation-driven charge crystals. The realization and atom-resolved visualization of imbalanced electron-hole crystals in a doped Mott insulator opens new doors in the search for correlated bosonic states within strongly correlated materials. |
2023 |
Fang, Hanyan; Mahalingam, Harshitra; Li, Xinzhe; Han, Xu; Qiu, Zhizhan; Han, Yixuan; Noori, Keian; Dulal, Dikshant; Chen, Hongfei; Lyu, Pin; Yang, Tianhao; Li, Jing; Su, Chenliang; Chen, Wei; Cai, Yongqing; Neto, Castro A H; Novoselov, Kostya S; Rodin, Aleksandr; Lu, Jiong Atomically precise vacancy-assembled quantum antidots Journal Article 27 NATURE NANOTECHNOLOGY, 18 (12), 2023, ISSN: 1748-3387. @article{ISI:001062548200002, title = {Atomically precise vacancy-assembled quantum antidots}, author = {Hanyan Fang and Harshitra Mahalingam and Xinzhe Li and Xu Han and Zhizhan Qiu and Yixuan Han and Keian Noori and Dikshant Dulal and Hongfei Chen and Pin Lyu and Tianhao Yang and Jing Li and Chenliang Su and Wei Chen and Yongqing Cai and Castro A H Neto and Kostya S Novoselov and Aleksandr Rodin and Jiong Lu}, doi = {10.1038/s41565-023-01495-z}, times_cited = {27}, issn = {1748-3387}, year = {2023}, date = {2023-08-31}, journal = {NATURE NANOTECHNOLOGY}, volume = {18}, number = {12}, publisher = {NATURE PORTFOLIO}, address = {HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY}, abstract = {Patterning antidots, which are regions of potential hills that repel electrons, into well-defined antidot lattices creates fascinating artificial periodic structures, leading to anomalous transport properties and exotic quantum phenomena in two-dimensional systems. Although nanolithography has brought conventional antidots from the semiclassical regime to the quantum regime, achieving precise control over the size of each antidot and its spatial period at the atomic scale has remained challenging. However, attaining such control opens the door to a new paradigm, enabling the creation of quantum antidots with discrete quantum hole states, which, in turn, offer a fertile platform to explore novel quantum phenomena and hot electron dynamics in previously inaccessible regimes. Here we report an atomically precise bottom-up fabrication of a series of atomic-scale quantum antidots through a thermal-induced assembly of a chalcogenide single vacancy in PtTe2. Such quantum antidots consist of highly ordered single-vacancy lattices, spaced by a single Te atom, reaching the ultimate downscaling limit of antidot lattices. Increasing the number of single vacancies in quantum antidots strengthens the cumulative repulsive potential and consequently enhances the collective interference of multiple-pocket scattered quasiparticles inside quantum antidots, creating multilevel quantum hole states with a tunable gap from the telecom to far-infrared regime. Moreover, precisely engineered quantum hole states of quantum antidots are geometry protected and thus survive on oxygen substitutional doping. Therefore, single-vacancy-assembled quantum antidots exhibit unprecedented robustness and property tunability, positioning them as highly promising candidates for advancing quantum information and photocatalysis technologies.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Patterning antidots, which are regions of potential hills that repel electrons, into well-defined antidot lattices creates fascinating artificial periodic structures, leading to anomalous transport properties and exotic quantum phenomena in two-dimensional systems. Although nanolithography has brought conventional antidots from the semiclassical regime to the quantum regime, achieving precise control over the size of each antidot and its spatial period at the atomic scale has remained challenging. However, attaining such control opens the door to a new paradigm, enabling the creation of quantum antidots with discrete quantum hole states, which, in turn, offer a fertile platform to explore novel quantum phenomena and hot electron dynamics in previously inaccessible regimes. Here we report an atomically precise bottom-up fabrication of a series of atomic-scale quantum antidots through a thermal-induced assembly of a chalcogenide single vacancy in PtTe2. Such quantum antidots consist of highly ordered single-vacancy lattices, spaced by a single Te atom, reaching the ultimate downscaling limit of antidot lattices. Increasing the number of single vacancies in quantum antidots strengthens the cumulative repulsive potential and consequently enhances the collective interference of multiple-pocket scattered quasiparticles inside quantum antidots, creating multilevel quantum hole states with a tunable gap from the telecom to far-infrared regime. Moreover, precisely engineered quantum hole states of quantum antidots are geometry protected and thus survive on oxygen substitutional doping. Therefore, single-vacancy-assembled quantum antidots exhibit unprecedented robustness and property tunability, positioning them as highly promising candidates for advancing quantum information and photocatalysis technologies. |
Yang, Kou; Hu, Zhitao; Li, Xiaolai; Nikolaev, Konstantin; Hong, Gan Kai; Mamchik, Natalia; Erofeev, Ivan; Mirsaidov, Utkur M; Neto, Antonio Castro H; Blackwood, Daniel J; Shchukin, Dmitry G; Trushin, Maxim; Novoselov, Kostya S; Andreeva, Daria V Graphene oxide-polyamine preprogrammable nanoreactors with sensing capability for corrosion protection of materials Journal Article PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 120 (35), 2023, ISSN: 0027-8424. @article{ISI:001112759000007, title = {Graphene oxide-polyamine preprogrammable nanoreactors with sensing capability for corrosion protection of materials}, author = {Kou Yang and Zhitao Hu and Xiaolai Li and Konstantin Nikolaev and Gan Kai Hong and Natalia Mamchik and Ivan Erofeev and Utkur M Mirsaidov and Antonio Castro H Neto and Daniel J Blackwood and Dmitry G Shchukin and Maxim Trushin and Kostya S Novoselov and Daria V Andreeva}, doi = {10.1073/pnas.2307618120}, times_cited = {9}, issn = {0027-8424}, year = {2023}, date = {2023-08-21}, journal = {PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA}, volume = {120}, number = {35}, publisher = {NATL ACAD SCIENCES}, address = {2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA}, abstract = {Corrosion is one of the major issues for sustainable manufacturing globally. The annual global cost of corrosion is US$2.5 trillion (approximately 3.4% of the world's GDP). The traditional ways of corrosion protection (such as barriers or inhibiting) are either not very effective (in the case of barrier protection) or excessively expensive (inhibiting). Here, we demonstrate a concept of nanoreactors, which are able to controllably release or adsorb protons or hydroxides directly on corrosion sites, hence, selectively regulating the corrosion reactions. A single nanoreactor comprises a nano compartment wrapped around by a pH-sensing membrane represented, respectively, by a halloysite nanotube and a graphene oxide/polyamine envelope. A nanoreactor response is determined by the change of a signaling pH on a given corrosion site. The nanoreactors are self-assembled and suitable for mass line production. The concept creates sustainable technology for developing smart anticorrosion coatings, which are nontoxic, selective, and inexpensive.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Corrosion is one of the major issues for sustainable manufacturing globally. The annual global cost of corrosion is US$2.5 trillion (approximately 3.4% of the world's GDP). The traditional ways of corrosion protection (such as barriers or inhibiting) are either not very effective (in the case of barrier protection) or excessively expensive (inhibiting). Here, we demonstrate a concept of nanoreactors, which are able to controllably release or adsorb protons or hydroxides directly on corrosion sites, hence, selectively regulating the corrosion reactions. A single nanoreactor comprises a nano compartment wrapped around by a pH-sensing membrane represented, respectively, by a halloysite nanotube and a graphene oxide/polyamine envelope. A nanoreactor response is determined by the change of a signaling pH on a given corrosion site. The nanoreactors are self-assembled and suitable for mass line production. The concept creates sustainable technology for developing smart anticorrosion coatings, which are nontoxic, selective, and inexpensive. |
