Konstantin Novoselov

Degree: PhD
Affiliation: NUS – Department of Materials Science and Engineering
Research Type: Experiment
Office: EA-04-10
Email: kostya@nus.edu.sg
Contact: (65) 6601 1396
Website: http://www.condmat.physics.manchester.ac.uk/people/academic/novoselov/
CA2DM Publications:
2025 |
Zhang, Hongji; Grebenko, Artem K; Iakoubovskii, Konstantin V; Zhang, Hanning; Yamaletdinov, Ruslan; Makarova, Anna; Fedorov, Alexander; Rejaul, S K; Shivajirao, Ranjith; Tong, Zheng Jue; Grebenchuk, Sergey; Karadeniz, Ugur; Shi, Lu; Vyalikh, Denis V; He, Ya; Starkov, Andrei; Alekseeva, Alena A; Tee, Chuan Chu; Orofeo, Carlo Mendoza; Lin, Junhao; Suenaga, Kazutomo; Bosman, Michel; Koperski, Maciej; Weber, Bent; Novoselov, Kostya S; Yazyev, Oleg V; Toh, Chee-Tat; Ozyilmaz, Barbaros Superior Adhesion of Monolayer Amorphous Carbon to Copper Journal Article ADVANCED MATERIALS, 2025, ISSN: 0935-9648. @article{ISI:001498039100001, title = {Superior Adhesion of Monolayer Amorphous Carbon to Copper}, author = {Hongji Zhang and Artem K Grebenko and Konstantin V Iakoubovskii and Hanning Zhang and Ruslan Yamaletdinov and Anna Makarova and Alexander Fedorov and S K Rejaul and Ranjith Shivajirao and Zheng Jue Tong and Sergey Grebenchuk and Ugur Karadeniz and Lu Shi and Denis V Vyalikh and Ya He and Andrei Starkov and Alena A Alekseeva and Chuan Chu Tee and Carlo Mendoza Orofeo and Junhao Lin and Kazutomo Suenaga and Michel Bosman and Maciej Koperski and Bent Weber and Kostya S Novoselov and Oleg V Yazyev and Chee-Tat Toh and Barbaros Ozyilmaz}, doi = {10.1002/adma.202419112}, times_cited = {0}, issn = {0935-9648}, year = {2025}, date = {2025-05-29}, journal = {ADVANCED MATERIALS}, publisher = {WILEY-V C H VERLAG GMBH}, address = {POSTFACH 101161, 69451 WEINHEIM, GERMANY}, abstract = {The single-atom thickness of graphene holds great potential for device scaling, but its effectiveness as a thin metal-ion diffusion barrier in microelectronics and a corrosion barrier for plasmonic devices is compromised by weak van der Waals interactions with copper (Cu), leading to delamination issues. In contrast, monolayer amorphous carbon (MAC), a recently reported single-atom-thick carbon film with a disordered sp2 hybridized structure, demonstrates superior adhesion properties. This study reveals that MAC exhibits an adhesion energy of 85 J m-2 on Cu, which is 13 times greater than that of graphene. This exceptional adhesion is attributed to the formation of covalent-like Cu & horbar;C bonds while preserving its sp2 structure, as evidenced by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Density functional theory (DFT) calculations further elucidate that the corrugated structure of MAC facilitates the hybridization of C 2pz orbitals with Cu 4s and 3dz2 orbitals, promoting strong bonding. These insights indicate that the amorphous structure of MAC significantly enhances adhesion while preserving its elemental composition, providing a pathway to improve the mechanical reliability and performance of two-dimensional (2D) materials on metal substrates in various technological applications.}, keywords = {}, pubstate = {published}, tppubtype = {article} } The single-atom thickness of graphene holds great potential for device scaling, but its effectiveness as a thin metal-ion diffusion barrier in microelectronics and a corrosion barrier for plasmonic devices is compromised by weak van der Waals interactions with copper (Cu), leading to delamination issues. In contrast, monolayer amorphous carbon (MAC), a recently reported single-atom-thick carbon film with a disordered sp2 hybridized structure, demonstrates superior adhesion properties. This study reveals that MAC exhibits an adhesion energy of 85 J m-2 on Cu, which is 13 times greater than that of graphene. This exceptional adhesion is attributed to the formation of covalent-like Cu & horbar;C bonds while preserving its sp2 structure, as evidenced by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Density functional theory (DFT) calculations further elucidate that the corrugated structure of MAC facilitates the hybridization of C 2pz orbitals with Cu 4s and 3dz2 orbitals, promoting strong bonding. These insights indicate that the amorphous structure of MAC significantly enhances adhesion while preserving its elemental composition, providing a pathway to improve the mechanical reliability and performance of two-dimensional (2D) materials on metal substrates in various technological applications. |
Li, Tianbo; Lin, Min; Dale, Stephen G; Shi, Zekun; Neto, Castro A H; Novoselov, Kostya S; Vignale, Giovanni Diagonalization without Diagonalization: A Direct Optimization Approach for Solid-State Density Functional Theory Journal Article JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 21 (9), pp. 4730-4741, 2025, ISSN: 1549-9618. @article{ISI:001478048300001, title = {Diagonalization without Diagonalization: A Direct Optimization Approach for Solid-State Density Functional Theory}, author = {Tianbo Li and Min Lin and Stephen G Dale and Zekun Shi and Castro A H Neto and Kostya S Novoselov and Giovanni Vignale}, doi = {10.1021/acs.jctc.4c01551}, times_cited = {0}, issn = {1549-9618}, year = {2025}, date = {2025-04-28}, journal = {JOURNAL OF CHEMICAL THEORY AND COMPUTATION}, volume = {21}, number = {9}, pages = {4730-4741}, publisher = {AMER CHEMICAL SOC}, address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA}, abstract = {We present a novel approach to address the challenges of variable occupation numbers in direct optimization of density functional theory (DFT). By parametrizing both the eigenfunctions and the occupation matrix, our method minimizes the free energy with respect to these parameters. As the stationary conditions require the occupation matrix and the Kohn-Sham Hamiltonian to be simultaneously diagonalizable, this leads to the concept of "self-diagonalization," where, by assuming a diagonal occupation matrix without loss of generality, the Hamiltonian matrix naturally becomes diagonal at stationary points. Our method incorporates physical constraints on both the eigenfunctions and the occupations into the parametrization, transforming the constrained optimization into an fully differentiable unconstrained problem, which is solvable via gradient descent. Implemented in JAX, our method was tested on aluminum and silicon, confirming that it achieves efficient self-diagonalization, produces the correct Fermi-Dirac distribution of the occupation numbers and yields band structures consistent with those obtained with SCF eigensolver methods in Quantum Espresso.}, keywords = {}, pubstate = {published}, tppubtype = {article} } We present a novel approach to address the challenges of variable occupation numbers in direct optimization of density functional theory (DFT). By parametrizing both the eigenfunctions and the occupation matrix, our method minimizes the free energy with respect to these parameters. As the stationary conditions require the occupation matrix and the Kohn-Sham Hamiltonian to be simultaneously diagonalizable, this leads to the concept of "self-diagonalization," where, by assuming a diagonal occupation matrix without loss of generality, the Hamiltonian matrix naturally becomes diagonal at stationary points. Our method incorporates physical constraints on both the eigenfunctions and the occupations into the parametrization, transforming the constrained optimization into an fully differentiable unconstrained problem, which is solvable via gradient descent. Implemented in JAX, our method was tested on aluminum and silicon, confirming that it achieves efficient self-diagonalization, produces the correct Fermi-Dirac distribution of the occupation numbers and yields band structures consistent with those obtained with SCF eigensolver methods in Quantum Espresso. |
2024 |
Ratwani, Chirag R; Donato, Katarzyna Z; Grebenchuk, Sergey; Mija, Alice; Novoselov, Kostya S; Abdelkader, Amr M Enhanced Self-Healing in Dual Network Entangled Hydrogels by Macromolecular Architecture and Alignent of Surface Functionalized hBN Nanosheets Journal Article ADVANCED MATERIALS INTERFACES, 12 (6), 2024, ISSN: 2196-7350. @article{ISI:001357180100001, title = {Enhanced Self-Healing in Dual Network Entangled Hydrogels by Macromolecular Architecture and Alignent of Surface Functionalized hBN Nanosheets}, author = {Chirag R Ratwani and Katarzyna Z Donato and Sergey Grebenchuk and Alice Mija and Kostya S Novoselov and Amr M Abdelkader}, doi = {10.1002/admi.202400691}, times_cited = {0}, issn = {2196-7350}, year = {2024}, date = {2024-10-31}, journal = {ADVANCED MATERIALS INTERFACES}, volume = {12}, number = {6}, publisher = {WILEY}, address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, abstract = {Hydrogels have shown great promise as versatile biomaterials for various applications, ranging from tissue engineering to flexible electronics. Among their notable attributes, self-healing capabilities stand out as a significant advantage, facilitating autonomous repair of mechanical damage and restoration of structural integrity. In this work, a dual network macromolecular biphasic composite is designed using an anisotropic structure which facilitates unidirectional chain diffusion and imparts superior self-healing and mechanical properties. The resulting nanocomposite demonstrates significantly higher self-healing efficiency (92%) compared to traditional polyvinyl alcohol (PVA) hydrogels, while also improving the tensile strength and elastic modulus, which typically compete with each other in soft materials. This improvement is attributed to enhanced barrier properties within the matrix due to the alignment of surface-functionalized 2D hBN nanosheets along the biopolymer scaffold. The insights gained from this research can be leveraged to develop advanced self-healing materials by using 2D nanofillers as "safety barriers" to define the movement of polymeric chains.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Hydrogels have shown great promise as versatile biomaterials for various applications, ranging from tissue engineering to flexible electronics. Among their notable attributes, self-healing capabilities stand out as a significant advantage, facilitating autonomous repair of mechanical damage and restoration of structural integrity. In this work, a dual network macromolecular biphasic composite is designed using an anisotropic structure which facilitates unidirectional chain diffusion and imparts superior self-healing and mechanical properties. The resulting nanocomposite demonstrates significantly higher self-healing efficiency (92%) compared to traditional polyvinyl alcohol (PVA) hydrogels, while also improving the tensile strength and elastic modulus, which typically compete with each other in soft materials. This improvement is attributed to enhanced barrier properties within the matrix due to the alignment of surface-functionalized 2D hBN nanosheets along the biopolymer scaffold. The insights gained from this research can be leveraged to develop advanced self-healing materials by using 2D nanofillers as "safety barriers" to define the movement of polymeric chains. |
Qiu, Zhizhan; Han, Yixuan; Noori, Keian; Chen, Zhaolong; Kashchenko, Mikhail; Lin, Li; Olsen, Thomas; Li, Jing; Fang, Hanyan; Lyu, Pin; Telychko, Mykola; Gu, Xingyu; Adam, Shaffique; Quek, Su Ying; Rodin, Aleksandr; Neto, Castro A H; Novoselov, Kostya S; Lu, Jiong Evidence for electron-hole crystals in a Mott insulator Journal Article NATURE MATERIALS, 23 (8), 2024, ISSN: 1476-1122. @article{ISI:001237790900002, title = {Evidence for electron-hole crystals in a Mott insulator}, author = {Zhizhan Qiu and Yixuan Han and Keian Noori and Zhaolong Chen and Mikhail Kashchenko and Li Lin and Thomas Olsen and Jing Li and Hanyan Fang and Pin Lyu and Mykola Telychko and Xingyu Gu and Shaffique Adam and Su Ying Quek and Aleksandr Rodin and Castro A H Neto and Kostya S Novoselov and Jiong Lu}, doi = {10.1038/s41563-024-01910-3}, times_cited = {8}, issn = {1476-1122}, year = {2024}, date = {2024-06-03}, journal = {NATURE MATERIALS}, volume = {23}, number = {8}, publisher = {NATURE PORTFOLIO}, address = {HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY}, abstract = {The coexistence of correlated electron and hole crystals enables the realization of quantum excitonic states, capable of hosting counterflow superfluidity and topological orders with long-range quantum entanglement. Here we report evidence for imbalanced electron-hole crystals in a doped Mott insulator, namely, alpha-RuCl3, through gate-tunable non-invasive van der Waals doping from graphene. Real-space imaging via scanning tunnelling microscopy reveals two distinct charge orderings at the lower and upper Hubbard band energies, whose origin is attributed to the correlation-driven honeycomb hole crystal composed of hole-rich Ru sites and rotational-symmetry-breaking paired electron crystal composed of electron-rich Ru-Ru bonds, respectively. Moreover, a gate-induced transition of electron-hole crystals is directly visualized, further corroborating their nature as correlation-driven charge crystals. The realization and atom-resolved visualization of imbalanced electron-hole crystals in a doped Mott insulator opens new doors in the search for correlated bosonic states within strongly correlated materials.}, keywords = {}, pubstate = {published}, tppubtype = {article} } The coexistence of correlated electron and hole crystals enables the realization of quantum excitonic states, capable of hosting counterflow superfluidity and topological orders with long-range quantum entanglement. Here we report evidence for imbalanced electron-hole crystals in a doped Mott insulator, namely, alpha-RuCl3, through gate-tunable non-invasive van der Waals doping from graphene. Real-space imaging via scanning tunnelling microscopy reveals two distinct charge orderings at the lower and upper Hubbard band energies, whose origin is attributed to the correlation-driven honeycomb hole crystal composed of hole-rich Ru sites and rotational-symmetry-breaking paired electron crystal composed of electron-rich Ru-Ru bonds, respectively. Moreover, a gate-induced transition of electron-hole crystals is directly visualized, further corroborating their nature as correlation-driven charge crystals. The realization and atom-resolved visualization of imbalanced electron-hole crystals in a doped Mott insulator opens new doors in the search for correlated bosonic states within strongly correlated materials. |
2023 |
Fang, Hanyan; Mahalingam, Harshitra; Li, Xinzhe; Han, Xu; Qiu, Zhizhan; Han, Yixuan; Noori, Keian; Dulal, Dikshant; Chen, Hongfei; Lyu, Pin; Yang, Tianhao; Li, Jing; Su, Chenliang; Chen, Wei; Cai, Yongqing; Neto, Castro A H; Novoselov, Kostya S; Rodin, Aleksandr; Lu, Jiong Atomically precise vacancy-assembled quantum antidots Journal Article 22 NATURE NANOTECHNOLOGY, 18 (12), 2023, ISSN: 1748-3387. @article{ISI:001062548200002, title = {Atomically precise vacancy-assembled quantum antidots}, author = {Hanyan Fang and Harshitra Mahalingam and Xinzhe Li and Xu Han and Zhizhan Qiu and Yixuan Han and Keian Noori and Dikshant Dulal and Hongfei Chen and Pin Lyu and Tianhao Yang and Jing Li and Chenliang Su and Wei Chen and Yongqing Cai and Castro A H Neto and Kostya S Novoselov and Aleksandr Rodin and Jiong Lu}, doi = {10.1038/s41565-023-01495-z}, times_cited = {22}, issn = {1748-3387}, year = {2023}, date = {2023-08-31}, journal = {NATURE NANOTECHNOLOGY}, volume = {18}, number = {12}, publisher = {NATURE PORTFOLIO}, address = {HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY}, abstract = {Patterning antidots, which are regions of potential hills that repel electrons, into well-defined antidot lattices creates fascinating artificial periodic structures, leading to anomalous transport properties and exotic quantum phenomena in two-dimensional systems. Although nanolithography has brought conventional antidots from the semiclassical regime to the quantum regime, achieving precise control over the size of each antidot and its spatial period at the atomic scale has remained challenging. However, attaining such control opens the door to a new paradigm, enabling the creation of quantum antidots with discrete quantum hole states, which, in turn, offer a fertile platform to explore novel quantum phenomena and hot electron dynamics in previously inaccessible regimes. Here we report an atomically precise bottom-up fabrication of a series of atomic-scale quantum antidots through a thermal-induced assembly of a chalcogenide single vacancy in PtTe2. Such quantum antidots consist of highly ordered single-vacancy lattices, spaced by a single Te atom, reaching the ultimate downscaling limit of antidot lattices. Increasing the number of single vacancies in quantum antidots strengthens the cumulative repulsive potential and consequently enhances the collective interference of multiple-pocket scattered quasiparticles inside quantum antidots, creating multilevel quantum hole states with a tunable gap from the telecom to far-infrared regime. Moreover, precisely engineered quantum hole states of quantum antidots are geometry protected and thus survive on oxygen substitutional doping. Therefore, single-vacancy-assembled quantum antidots exhibit unprecedented robustness and property tunability, positioning them as highly promising candidates for advancing quantum information and photocatalysis technologies.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Patterning antidots, which are regions of potential hills that repel electrons, into well-defined antidot lattices creates fascinating artificial periodic structures, leading to anomalous transport properties and exotic quantum phenomena in two-dimensional systems. Although nanolithography has brought conventional antidots from the semiclassical regime to the quantum regime, achieving precise control over the size of each antidot and its spatial period at the atomic scale has remained challenging. However, attaining such control opens the door to a new paradigm, enabling the creation of quantum antidots with discrete quantum hole states, which, in turn, offer a fertile platform to explore novel quantum phenomena and hot electron dynamics in previously inaccessible regimes. Here we report an atomically precise bottom-up fabrication of a series of atomic-scale quantum antidots through a thermal-induced assembly of a chalcogenide single vacancy in PtTe2. Such quantum antidots consist of highly ordered single-vacancy lattices, spaced by a single Te atom, reaching the ultimate downscaling limit of antidot lattices. Increasing the number of single vacancies in quantum antidots strengthens the cumulative repulsive potential and consequently enhances the collective interference of multiple-pocket scattered quasiparticles inside quantum antidots, creating multilevel quantum hole states with a tunable gap from the telecom to far-infrared regime. Moreover, precisely engineered quantum hole states of quantum antidots are geometry protected and thus survive on oxygen substitutional doping. Therefore, single-vacancy-assembled quantum antidots exhibit unprecedented robustness and property tunability, positioning them as highly promising candidates for advancing quantum information and photocatalysis technologies. |
Yang, Kou; Hu, Zhitao; Li, Xiaolai; Nikolaev, Konstantin; Hong, Gan Kai; Mamchik, Natalia; Erofeev, Ivan; Mirsaidov, Utkur M; Neto, Antonio Castro H; Blackwood, Daniel J; Shchukin, Dmitry G; Trushin, Maxim; Novoselov, Kostya S; Andreeva, Daria V Graphene oxide-polyamine preprogrammable nanoreactors with sensing capability for corrosion protection of materials Journal Article PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 120 (35), 2023, ISSN: 0027-8424. @article{ISI:001112759000007, title = {Graphene oxide-polyamine preprogrammable nanoreactors with sensing capability for corrosion protection of materials}, author = {Kou Yang and Zhitao Hu and Xiaolai Li and Konstantin Nikolaev and Gan Kai Hong and Natalia Mamchik and Ivan Erofeev and Utkur M Mirsaidov and Antonio Castro H Neto and Daniel J Blackwood and Dmitry G Shchukin and Maxim Trushin and Kostya S Novoselov and Daria V Andreeva}, doi = {10.1073/pnas.2307618120}, times_cited = {3}, issn = {0027-8424}, year = {2023}, date = {2023-08-21}, journal = {PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA}, volume = {120}, number = {35}, publisher = {NATL ACAD SCIENCES}, address = {2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA}, abstract = {Corrosion is one of the major issues for sustainable manufacturing globally. The annual global cost of corrosion is US$2.5 trillion (approximately 3.4% of the world's GDP). The traditional ways of corrosion protection (such as barriers or inhibiting) are either not very effective (in the case of barrier protection) or excessively expensive (inhibiting). Here, we demonstrate a concept of nanoreactors, which are able to controllably release or adsorb protons or hydroxides directly on corrosion sites, hence, selectively regulating the corrosion reactions. A single nanoreactor comprises a nano compartment wrapped around by a pH-sensing membrane represented, respectively, by a halloysite nanotube and a graphene oxide/polyamine envelope. A nanoreactor response is determined by the change of a signaling pH on a given corrosion site. The nanoreactors are self-assembled and suitable for mass line production. The concept creates sustainable technology for developing smart anticorrosion coatings, which are nontoxic, selective, and inexpensive.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Corrosion is one of the major issues for sustainable manufacturing globally. The annual global cost of corrosion is US$2.5 trillion (approximately 3.4% of the world's GDP). The traditional ways of corrosion protection (such as barriers or inhibiting) are either not very effective (in the case of barrier protection) or excessively expensive (inhibiting). Here, we demonstrate a concept of nanoreactors, which are able to controllably release or adsorb protons or hydroxides directly on corrosion sites, hence, selectively regulating the corrosion reactions. A single nanoreactor comprises a nano compartment wrapped around by a pH-sensing membrane represented, respectively, by a halloysite nanotube and a graphene oxide/polyamine envelope. A nanoreactor response is determined by the change of a signaling pH on a given corrosion site. The nanoreactors are self-assembled and suitable for mass line production. The concept creates sustainable technology for developing smart anticorrosion coatings, which are nontoxic, selective, and inexpensive. |