CA2DM seminars go online!

CA2DM introduces “CA2DM Homely Atmosphere Online Seminars (CHAOS)”

To keep our minds active and healthy during this lockdown period, Centre for Advanced 2D Materials would like to introduce the “CA2DM Homely Atmosphere Online Seminars (CHAOS)”.

We are delighted to have Professor Konstantin Novoselov as our first speaker next Tuesday, 21 April 2020 at 1600 (Asia/Singapore Timezone).

Please visit this link to register:

You may also check out the link below to be kept updated and to view all the upcoming seminars:

CA2DM scientists create world’s first monolayer amorphorus film

Researchers at NUS Physics, CA2DM and Materials Science and Engineering have created the world’s first atomically thin amorphous carbon film. The amorphous structure has widely varying atom-to-atom distance unlike crystals. This is because of the random arrangement of five-, six-, seven- and eight-carbon rings in a planar carbon network, leading to a wide distribution of bond lengths (in Å) and bond angles

NUS scientists have synthesised the world’s first one-atom-thick amorphous material. Previously thought to be impossible, the discovery of monolayer amorphous carbon (MAC) could finally settle a decades-old debate of exactly how atoms are arranged in amorphous solids, and open up potential applications. 

Continue Reading

CA2DM Director and researchers among world’s most highly cited researchers 2019

NUS researchers among the world’s most influential scientific minds

A total of 27 NUS researchers were named in the global Highly Cited Researchers 2019 list released by Clarivate Analytics today. These NUS researchers were recognised by their peers as outstanding researchers in the fields of Chemistry, Computer Science, Economics and Business, Engineering, Materials Science, Physics and more.

The annual Highly Cited Researchers list from the Web of Science Group identifies scientists and social scientists who have demonstrated significant influence through publication of multiple papers that are ranked in the top 1 per cent by citations for their field and year of publication.

The Highly Cited Researchers 2019 draws on the data and analysis performed by bibliometric experts from the Institute for Scientific Information at the Web of Science Group. This year, some 6,000 unique researchers have been named Highly Cited Researchers across 21 fields of study, with over 3,500 in specific fields and close to 2,500 for cross-field performance.

Continue Reading

CA2DM achieves Occupational Health & Safety KPIs

Centre for Advanced 2D Materials (CA2DM) is delighted to recognise the great achievement in Occupational Health and Safety through KPIs review conducted by NUS senior management on September 2019.

Professor Antonio Castro Neto, Director of CA2DM, receiving the Commitment Award from Professor Yong Kwet Yew, Senior Vice President of Campus Infrastructure, during the NUS Safety & Health Award 2017 ceremony.
(Photo taken by NUS OSHE)

This achievement is a testament to everyone on their continued dedication and commitment to ensure health and safety in all of CA2DM research facilities. Awarded with ‘Commitment Award’, CA2DM established and implemented Occupational Health & Safety Management System (OHSMS); as accordance to OHSAS 18001 and Singapore Standard SS 506 in Year 2016.

These achievements represent CA2DM’s beliefs on the use of best practices and reaffirm its commitment on ensuring compliance to regulations and providing a safe environment for staff, students, researchers and collaborators at all times. CA2DM adopts a holistic approach towards Occupational Health and Safety. Continuous support and collaboration efforts between individual and leadership is the key to achieving these excellence.

“CA2DM has come a long way for Health & Safety and we are most glade to achieve a level of recognition from our management. We will continue to strive for higher levels and it will always be a journey for us.”
–  Mr. Ang Han Siong, Senior Associate Director of CA2DM

 “Managing and obtaining an excellent occupational health and safety results in a complex and ever changing environment filled with extraordinary multicultural mix of researchers; this is a milestone of enormous value!”
–  Mr. Liaw Jinle (Zinc), Lead of Occupational Health & Safety at CA2DM

CA2DM’s Daria Andreeva joins NUS Materials Science and Engineering Department as Associate Professor

Daria Andreeva is a physical chemist who now applies her knowledge in the context of development and investigation of dynamic stimuli responsive materials, materials that can change properties on demand.

Daria has authored more than 80 research papers and received various fellowships (e.g. AvH, DAAD, DFG, UNESCO, etc.).

In the past, Daria has studied self-adaptive polymer membranes, dynamic properties of polyelectrolyte multilayers, layer-by-layer assemblies of charged macromolecules, for active corrosion protection. She leaded a physical chemistry group at the University of Bayreuth, Germany in 2009-2016. Having finishing her habilitation, she joined the Centre for Soft and Living Matter, South Korea, in 2016, and the Centre for Advanced 2D Materials, Singapore, in 2017.

Daria currently focuses on the design of 2D membranes with programmable functionalities. She explores electrochemical phenomena in self-assembled polyelectrolytes and 2D materials for smart ionic transport and energy harvesting.

CA2DM reaches an h-index of 100 in less than 10 years

In less than 10 years, the Centre for Advanced 2D Materials, initially known as Graphene Research Centre, published over 1000 research papers.

At least 100 of these publications have by now been cited 100 times or more; in other words, CA2DM reached an h-index of 100 in less than 10 years.

Since CA2DM was also one of the first centres in the world dedicated to graphene and two-dimensional materials, we use the “m-quotient”, defined as the h-index divided by the number of years since the first publication, to compare its research impact with similar centres.

Among CA2DM’s highly cited publications are studies on graphene, black phosphorous, transition metal dichalcogenides, van der Waals heterostructures and topological insulators.

CA2DM’s full publication list can be found at here.

2DMatPedia, an open computational database of two-dimensional materials from top-down and bottom-up approaches

CA2DM researchers, in collaboration with researchers from the Materials Project and using resources from Singapore’s National Supercomputing Centre, have created an open database of potential 2D materials generated from both computational exfoliation and chemical substitution, available online at

It was now published on Nature’s Scientific Data, a peer-reviewed, open-access journal for descriptions of scientifically valuable datasets, and research that advances the sharing and reuse of scientific data.

Full text online:

Black phosphorus and its isoelectronic materials


The family of 2D and layered materials has been expanding rapidly for more than a decade. Within this large family of hundreds of materials, black phosphorus and its isoelectronic group IV monochalcogenides have a unique place. These puckered materials have distinctive crystalline symmetries and exhibit various exciting properties, such as high carrier mobility , strong infrared responsivity , widely tunable bandgap, in-plane anisotropy and spontaneous electric polarization. Here, we review their basic properties, highlight new electronic and photonic device concepts and novel physical phenomena and discuss future directions.

Key Points:

  • The crystalline symmetries of layered black phosphorus and its isoelectronic group IV monochalcogenides play a very important role in the determination of their physical properties.
  • Black phosphorus is likely to be the layered semiconductor material with the highest carrier mobility at room temperature, making it promising for high-performance electronic applications.
  • Black phosphorus, arsenic phosphorus and other group V alloys may find applications in mid-infrared photonics as alternative material systems owing to their layered nature and moderate bandgap.
  • Monolayer group IV monochalcogenides have a broken inversion symmetry and spontaneous in-plane electric polarization. They present a great platform for the exploration of piezoelectricity, ferroelectricity, ferroelasticity and multiferroics.
  • In black phosphorus and other group V alloys, the interplay between the crystal symmetry and spin–orbit coupling may lead to the realization of rich topological states.
  • Wafer-scale synthesis of this group of materials remains challenging. Future research may leverage the phase transition induced by pressure, temperature or high-intensity light.

Read the full article here:
For those without a subscription, a read online version is also available at