CONGRATULATIONS TO LIM XIAO FENG FOR DEFENDING HIS FYP PROJECT ON BATTERIES !
Lim Xiao Feng’s defence of his FYP project on ” MoS2/MoS3 coated nano-porous carbon as anode material for lithium-ion batterries”.
French style good bye party with friends and wine. We wish best for Laurent!
The National Research Foundation (NRF) intenational advisory panel to review progress of Competitive Research Programme (CRP) project . They are impressed with our industry focus research.
Graphene exhibits weak intrinsic spin-orbit coupling (SOC; hence, it is suitable for use in spintronics applications that require a long spin mean-free path of charge carriers. Due to the weak SOC, the control over the spin is also poor. However, the proximity effect can be leveraged for overcoming this limitation. By depositing graphene on a tungsten disulphide substrate, the strong SOC properties of the substrate are taken up by graphene. Using graphene with both weak and strong SOC, developing a graphene-based spin field effect transistor at room temperature is expected to get closer.
For exploring the non-local magneto-resistance in graphene deposited on a tungsten disulphide (WS2), a high magnetic field with two orientations with reference to the graphene plane is used. Based on these measurements, the orbital and the spin effects are distinguished. A rotational probe (Figure 1) is used to safeguard the sample from ambient conditions in all the experiments. This probes are designed specifically for spin transport measurements in TeslatronTMPT Cryofree® system (Figure2).
Figure 1. Rotating probe with chip holder
Figure 2. TeslatronTMPT Cryofree® system at Barbaros Ozyilmaz lab
Deputy Prime Minister and Chairman of National Research Foundation (NRF), Mr. Teo Chee Hean, accompanied by NUS President, Prof. Tan Chorh Chuan, the Permanent Secretary of NRF and Public Service Division, Ms. Yong Ying-I, and the CEO of NRF, Prof. Low Teck Seng, visited our Centre on 26 September 2017.
During the visit, Prof Antonio Castro Neto, Director of CA2DM and Prof Barbaros Oezyilmaz, Deputy Director (Translation) of CA2DM’s Office for Industry and Innovation (OII), shared with DPM Teo on the achievements of the Centre and how we translate scientific research to industry applications by supporting researchers to validate and benchmark their technologies and working closely with industry partners to identify graphene’s unique properties relevant for their needs.
There was also a presentation and demonstration on CA2DM’s 2D materials-based magnetic sensor, which is developed and fabricated entirely within CA2DM’s Micro and Nano Fabrication Facility, using latest state-of-art tools such as Electron Beam Lithography. It is possibly the thinnest ever magnetic field sensor which allows it to be integrated effectively and customised into any industrial applications such as bio-medical fields, petroleum pipe-lines inspection gauges etc.
This is a 3U CubeSat Structure with experimental housing — The Centre for Advanced Two-Dimensional Materials (CA2DM) of the National University of Singapore (NUS) has partnered with US-based Boreal Space to test the properties of graphene material after it has been launched into the stratosphere.
During this launch, the graphene material will be subjected to rapid acceleration, vibration, acoustic shock, strong pressure, and a wide range in temperature fluctuations. The research team will retrieve the graphene material and will be testing its properties to see if it was able to resist the various challenges imposed by the launch environment. Technologies that push the limits in graphene research by demonstrating electro-magnetic shielding; efficient solar power generation; and excellent thermal protection.
Although graphene is very promising for spin communication due to its extraordinary electron mobility, the lack of a bandgap restricts its prospects for semiconducting spin devices such as spin diodes and bipolar spin transistors. The recent emergence of black phosphorus, a high-mobility two-dimensional semiconductor, could help overcome this basic challenge. In this letter we report an important step towards making two-dimensional semiconductor spin devices. We have fabricated a spin valve based on ultrathin (~5 nm) semiconducting black phosphorus (bP), and established fundamental spin properties of this spin channel material, which supports all electrical spin injection, transport, precession and detection up to room temperature. In the non-local spin valve geometry we measure Hanle spin precession and observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6 μm. Our experimental results are in a very good agreement with first-principles calculations and demonstrate that the Elliott–Yafet spin relaxation mechanism is dominant. We also show that spin transport in ultrathin bP depends strongly on the charge carrier concentration, and can be manipulated by the electric field effect.
Want to work on high-impact research with a team of dedicated and passionate scientists? Our group is currently looking for new Post-Doctoral Researchers and Research Assistant to join our team. The detailed descriptions are in the links below and if you think you are a good fit for the job, please send your CV to Prof. Barbaros atphyob@nus.edu.sg.
The following links are a compilation of articles, press clippings and research papers encompassing both the fundamentals and commercial prospects and applications of Graphene.
For a great introduction to graphene, one cannot go past the Nature paper, “A roadmap for graphene”, by Kostya Novoselov. Commercial developments in the field of graphene applications are well covered in the articles from the Economist, Financial Times and Forbes. A more philosophical narrative on the path towards the discovery of graphene is found in Geim’s Nobel series. Lastly, the YouTube videos provides a more “hands-on” demonstration of graphene transfer, as filmed in the Ozyilmaz laboratory.
If you would like to know more about any of the information provided here, do not hesitate to contact us.
“How could graphene transform the future?”
A BBC mini-documentary on Graphene, including an interview with Kostya.