Scaling approach to electron-electron interactions in a chaotic quantum dot

Shaffique Adam, Piet W. Brouwer, and Prashant Sharma

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA

(Received 2 September 2003; published 23 December 2003)

A scaling theory is used to study the low-energy physics of electron-electron interactions in a double quantum dot. We show that the fact that electrons are delocalized over two quantum dots does not affect the instability criterion for the description of electron-electron interactions in terms of a “universal interaction Hamiltonian.”

DOI: 10.1103/PhysRevB.68.241311 PACS number(s): 73.21.La, 05.45.Mt

The statistical distribution of single-particle energy levels and wave functions in a chaotic quantum dot or disordered metal particle is described by random matrix theory. The validity of random matrix theory as a statistical description of energy levels and wave functions follows from the existence of a large parameter, the dimensionless conductance g of the metal grain or the quantum dot. The same large parameter g allows for a consistent and simple description of electron-electron interactions in quantum dots and metal grains, by means of the “universal interaction Hamiltonian,” which was proposed by Kurland, Aleiner, and Altshuler (see also Ref. 6). According to Ref. 5, to leading order in g, the only relevant contributions to the interaction Hamiltonian are the capacitive charging energy, the long-range exchange interaction, and the “Cooper-channel” interaction, which is responsible for the superconducting instability.

The justification for the universal interaction Hamiltonian follows from the statistics of wave functions ϕ_a in disordered metal grains or chaotic quantum dots. Wave functions determine the matrix elements of the electron-electron interaction,

$$V_{a\beta\gamma\delta} = \int d\mathbf{r}_1 d\mathbf{r}_2 \phi_a^*(\mathbf{r}_1) \phi_\beta^*(\mathbf{r}_2) V(\mathbf{r}_1, \mathbf{r}_2) \phi_\gamma(\mathbf{r}_2) \phi_\delta(\mathbf{r}_1).$$

The absence of (long-range) wave function correlations in chaotic quantum dots causes interaction matrix elements to be self-averaging. Most averages are zero, except averages of “diagonal” interaction matrix elements $V_{a\beta\gamma\delta}$, where the wave function indices coincide pairwise. Replacing interaction matrix elements $V_{a\beta\gamma\delta}$ by their ensemble average $\langle V_{a\beta\gamma\delta} \rangle$, only the charging energy, exchange coupling, and Cooper channel interaction remain, thus leading to the universal interaction Hamiltonian. Small nonuniversal corrections to the interaction Hamiltonian follow from residual wave function correlations in disordered metal grains or quantum dots, which cause small fluctuations of the interaction matrix elements $V_{a\beta\gamma\delta}$ around their average. Typically, these fluctuations are a factor $1/g$ smaller than the diagonal matrix elements.

Although the off-diagonal interaction matrix elements are a factor $1/g$ smaller than the diagonal elements, they are many, and it is legitimate to ask what their role is. This question was addressed by Murthy and co-workers using a renormalization-group approach in a series of papers. These authors assumed Fermi-liquid interactions on time scales shorter than \hbar/E_T, and used random matrix theory to describe electron dynamics on time scales beyond \hbar/E_T. Successively integrating out states with highest energy, they found that the universal interaction Hamiltonian is stable for repulsive Fermi-liquid interactions and for weak attractive Fermi-liquid interactions, whereas an instability occurs when the attraction is sufficiently strong. Remarkably, Murthy et al. found that the critical attraction strength is a factor $2\ln 2$ smaller than the attraction strength corresponding to the Pomeranchuk instability in the bulk Fermi liquid, thus creating a parameter regime where the bulk system is stable, whereas the finite-sized system is not.

A renormalization-group treatment of interactions in chaotic quantum dots requires knowledge of how (nonuniversal) wave function correlations depend on the energy difference between the wave functions involved. The answer to this question depends on the detailed shape of the quantum dot and is different for diffusive and ballistic electron dynamics (see also Ref. 6). Murthy et al. bypass this problem by using the eigenfunction correlations of a g-dimensional random matrix for all wave functions with energy within $E_T/2$ from the Fermi level, treating wave functions at larger energies as plane waves. Whereas the use of random matrix theory is justified for energies far below E_T only, it cannot be used to describe nonuniversal wave function statistics near the Thouless energy. Similarly, residual wave function correlations will persist for energies above E_T, which are not accounted for in Refs. 7–9. A correct treatment of wave function correlations around E_T is important for the renormalization group approach, since most of the renormalization of the interaction parameters takes place around that energy.

In this Rapid Communication we apply the renormalization-group scheme to the special case of a “double quantum dot,” see Fig. 2, inset. The double quantum dot consists of two quantum dots of roughly equal size coupled via a point contact with dimensionless conductance $g/2 \gg 1$. The Thouless energy E_T of the double-dot system is equal to $g \Delta$, where Δ is the double-dot level spacing (which is half the single-dot level spacing). The dimensionless conductances of the two individual quantum dots are assumed to be much larger than g, so that random matrix theory and the universal interaction Hamiltonian can be used to describe
wave functions and interactions in each of the dots separately. The advantage of the double-dot geometry is that wave function correlations for energy differences near E_T can be calculated in detail, so that no approximations need to be made upon constructing the renormalization group for the electron-electron interactions. The analogy between the double-dot system studied here and the single quantum dot studied by Murthy et al. is that in the double-dot electrons are confined to one dot for times well below \hbar/E_T, but not for larger times, whereas in the ballistic quantum dot studied in Refs. 7–9 they have a well-defined momentum for times below \hbar/E_T, but not for longer times.

Our main finding, to be elaborated below, is that, once the correct nonuniversal wave function correlations near E_T are taken into account, the instability of the universal Hamiltonian occurs at precisely the same interaction strength as the instability of the double-dot system without point contact between the dots. Although this conclusion is reached for one specific geometry only, the structure of our calculation leads us to expect that the same is true for the more general Pomeranchuk-type instabilities studied by Murthy et al. In other words, we expect that the fact that Refs. 7–9 find a Pomeranchuk-type instability studied by Murthy et al. leads us to expect that the same is true for the more general double-dot system studied here and the single quantum dot.

We now describe the details of our calculation. For technical convenience, we consider a double quantum dot with spinless electrons and with broken time-reversal symmetry. Using random matrix theory to describe each of the dots separately, the noninteracting part of the Hamiltonian for the double quantum dot reads15

$$H = \begin{pmatrix} H_1 & 0 \\ 0 & H_2 \end{pmatrix} + \sqrt{g/8N} H_{12},$$

where H_1 and H_2 are $N \times N$ Hermitian matrices modeling the Hamiltonians of the quantum dots without point contact and H_{12} is a $2N \times 2N$ Hermitian matrix modeling the point contact connecting the two quantum dots. The elements of H_1, H_2, and H_{12} are complex numbers taken from independent and identical Gaussian distributions. The rows and columns of H are labeled by roman numbers $k=1,\ldots,2N$, where $k=1,\ldots,N$ and $k=N+1,\ldots,2N$ correspond to the left and right dots, respectively. Eigenvalues of H are denoted $\epsilon_{\alpha,\beta}$, the corresponding eigenvector being written $\phi_{\alpha,\beta}(k)$. The size N of the random matrices H_1 and H_2 is of the order of the dimensionless conductance of the individual quantum dots and is taken to infinity at the end of the calculation.

The interaction Hamiltonian has the form13

$$H_{\text{int}} = \frac{1}{2} U_0 (\hat{n}_1 + \hat{n}_2)^2 + \frac{1}{2} U_1 (\hat{n}_1 - \hat{n}_2)^2,$$

where \hat{n}_1 and \hat{n}_2 are operators for the number of electrons in the two individual quantum dots. The first term in Eq. (3) corresponds to a “charging energy” for the double dot system, whereas the second term in Eq. (3) represents a dipolar interaction. Upon changing to the basis of eigenstates of the noninteracting Hamiltonian H, the total Hamiltonian reads

$$\hat{H} = \sum_a \epsilon_a \hat{\phi}_a^\dagger \hat{\phi}_a + \frac{1}{2} \sum_{a\beta\gamma} V_{a\beta\gamma} \hat{\phi}_a^\dagger \hat{\phi}_\beta \hat{\phi}_\gamma^\dagger \hat{\phi}_\delta^\dagger,$$

where $\hat{\phi}_a^\dagger$ and $\hat{\phi}_a$ are creation and annihilation operators for an electron in eigenstate α of the noninteracting Hamiltonian H and

$$V_{a\beta\gamma} = \sum_{k,l} (U_0 + U_1 \sigma_k \sigma_l) \phi_{a,\alpha}^\dagger(k) \phi_{\beta,\alpha}^\dagger(l) \phi_{\gamma,\alpha}^\dagger(l) \phi_{\delta,\alpha}(k),$$

where $\sigma_k=1$ for $k=1,\ldots,N$ and $\sigma_k=-1$ for $k=N+1,\ldots,2N$.

For large g, wave function elements $\phi_{\alpha,\beta}(k)$ are independently distributed Gaussian random numbers,

$$\langle \phi_{\alpha,\beta}(k) \phi_{\beta,\alpha}(l) \rangle = \frac{1}{2N} \delta_{kl} \delta_{\alpha \beta},$$

where $\langle \rangle$ denotes an average over the product of random matrices H_1 and H_2. As a result, interaction matrix elements $V_{a\beta\gamma}$ are self-averaging; fluctuations are of relative order $1/g$. Only diagonal elements have a nonzero average,

$$\langle V_{a\beta\gamma} \rangle = U_0 \delta_{a,\alpha} \delta_{\beta \gamma}.$$

Replacing the interaction matrix elements by their average, we find that interactions are described by the reduced interaction Hamiltonian

$$H_{\text{int}} = \frac{1}{2} U_{\text{eff}} (\hat{n}_1 + \hat{n}_2)^2,$$

where $\hat{n} = \hat{n}_1 + \hat{n}_2$ is the total number of electrons in the double quantum dot. Note that, in comparison to Eq. (3), the dipolar interaction has disappeared because the electron wave functions are delocalized over the entire double-dot system. Equation (8) is the equivalent of the universal interaction Hamiltonian for the double quantum dot; the disappearance of the dipolar interaction is the double-dot counterpart of the disappearance of all nonzero-mode Fermi-liquid interactions in the original construction of the universal interaction Hamiltonian.15

In order to study the importance of the many residual interaction matrix elements that are of order $1/g$, we perform a renormalization-group analysis, following Refs. 7–9 (see also Ref. 14). This analysis is reminiscent of Anderson’s “poor man’s” treatment of the Kondo problem. In order to find the effective interaction for electrons at the Fermi level e_F, one successively integrates out states at energies far away from e_F. Writing the cutoff energy as $\Delta/2$, we calculate the change of the effective interaction parameters U_0 and U_1 upon changing M to $M' < M$ within second-order perturbation theory, see Fig. 1.
The flow equations
\[\bar{U}_0(M') - \bar{U}_0(M) = \bar{U}^2 \sum_{k,l} \sum_{\nu,\mu} \frac{n_F(\epsilon_\nu) - n_F(\epsilon_\mu)}{\epsilon_\mu - \epsilon_\nu} \]
\[\times \phi_\mu^*(k) \phi_\mu(l) \phi_\nu^*(l) \phi_\nu(k), \]
(9)
\[\bar{U}_1(M') - \bar{U}_1(M) = \bar{U}^2 \sum_{k,l} \sigma_k \sigma_l \sum_{\nu,\mu} \frac{n_F(\epsilon_\nu) - n_F(\epsilon_\mu)}{\epsilon_\mu - \epsilon_\nu} \]
\[\times \phi_\mu^*(k) \phi_\mu(l) \phi_\nu^*(l) \phi_\nu(k), \]
(10)
where \(n_F(\epsilon) \) is the Fermi function and the sum over intermediate states is such that only states \(\mu \) and \(\nu \) with at least one of the energies \(\epsilon_\mu \) or \(\epsilon_\nu \), in the cutoff region \(M' \Delta/2 < |\epsilon - \epsilon_F| < M \Delta/2 \) are to be included. We omitted exchange contributions to the effective interaction, which are unimportant for the large-\(g \) limit we consider here. We follow Refs. 7–9 in replacing the product of the eigenfunctions \(\phi_\mu \) and \(\phi_\nu \) of the intermediate energies \(\epsilon_\mu \) and \(\epsilon_\nu \) in Eqs. (9) and (10) by its ensemble average. However, we deviate from Refs. 7–9 in keeping the precise dependence of the ensemble average of the wave functions \(\phi_\mu \) and \(\phi_\nu \) on the energy difference \(\epsilon_\mu - \epsilon_\nu \). Repeating the analysis of Ref. 16 for the Hamiltonian (2), the relevant wave function average is found to be (see also Ref. 17)
\[\langle \phi_\nu^*(k) \phi_\mu(k) \phi_\mu^*(l) \phi_\nu(l) \rangle = \frac{g \sigma_l \sigma_i \Delta^2}{4N^2 \left[g^2 \Delta^2 + \pi^2 (\epsilon_\mu - \epsilon_\nu)^2 \right]}
+ \frac{\delta_{\mu \nu} + \delta_{kl}}{4N^2} + \frac{1}{8N^3}. \]
(11)
Substituting this into Eqs. (9) and (10), we find that only the nonuniversal first term on the right-hand side of Eq. (11) contributes in the limit \(N \rightarrow \infty \). Changing to dimensionless interaction parameters \(\bar{u}_j = \bar{U}_j / \Delta, j = 0, 1 \), and replacing the difference equations (9) and (10) by a differential equation, one thus finds
\[\frac{d \bar{u}_0}{dM} = 0, \]
(12)
\[\frac{d \bar{u}_1}{dM} = \frac{\bar{u}_1^2}{g} \ln \left(\frac{4g^2 + M^2 \pi^2}{g^2 + M^2 \pi^2} \right). \]
(13)
The flow equations (12) and (13) are solved with the boundary conditions \(\bar{u}_j \rightarrow 0 \) as \(M \rightarrow \infty \). Integrating Eqs. (12) and (13), one finds that \(\bar{u}_0 \) does not flow, \(\bar{U}_0(M) = \bar{u}_0 \) for all \(M \), whereas
\[\bar{u}_1(M) = \frac{1}{u_1} + 1 - \frac{4}{\pi} \arctan \frac{M}{2g} + \frac{2}{\pi} \arctan \frac{M}{g} \]
\[- \frac{M}{g} \ln \left(\frac{4g^2 + M^2 \pi^2}{g^2 + M^2 \pi^2} \right)^{-1} \]
(14)
In Fig. 2, the solution of the flow equation for the effective dipolar interaction \(\bar{u}_1 \) is shown for various values of the unrenormalized interaction \(u_1 \).

In order to address the stability of the universal interaction Hamiltonian, we analyze Eq. (14) in the limit \(M \downarrow 0 \),
\[\bar{u}_1(M) = \left(\frac{1}{u_1} + 1 - \frac{2M}{g} \ln 2 \right)^{-1} \text{ for } M \downarrow 0. \]
(15)
For \(u_1 > -1 \), the effective interaction strength \(\bar{u}_1 \) remains bounded as \(M \downarrow 0 \). This implies that the corresponding interaction matrix elements at the Fermi level remain of order \(1/g \), justifying the use of the universal interaction Hamiltonian for those values of the dipolar interaction. It is only for the critical dipolar attraction strength \(u_1 = -1 \) that \(\bar{u}_1 \) diverges upon taking the cutoff energy \(M \Delta \) to zero. This is precisely at the same interaction strength as the location of the instability in the absence of interdot tunneling.

The renormalization approach of Murthy et al. differs from ours in two respects. First, in Refs. 7–9 there is no flow of the interaction parameters for \(M > g \). Second, in order to describe the flow for \(M < g \), Murthy et al. replace the eigenfunction average (11) by the average of eigenfunctions of a random matrix of size \(g \),
\[\langle \phi_\nu^*(k) \phi_\mu(k) \phi_\mu^*(l) \phi_\nu(l) \rangle = \frac{\delta_{\mu \nu} + \delta_{kl}}{g^2} - \frac{1}{g^2}. \]
(16)
One then obtains the following flow equations for the effective dipolar interaction strength \(\bar{u}_1 \):
\[\frac{d \bar{u}_1}{dM} = 0 \text{ if } M > g, \] (17a)
\[\frac{d \bar{u}_1}{dM} = \frac{2 \bar{u}_1^2 \ln 2}{g} \text{ if } M < g. \] (17b)
and the exact flow of Eq. (1) is incorrect. In Fig. 3 we compare the flow of Eq. (1) for the double-dot system only for \(M \ll g \) and \(M \gg g \), but not for the intermediate range \(M \sim g \). The solution of the erroneous flow equations (17) is

\[
\tilde{u}_1(M) = \begin{cases}
 u_1 & \text{if } M > g, \\

 \left[u_1^{-1} + 2(1 - M/g) \ln 2 \right]^{-1} & \text{if } M < g.
\end{cases}
\]

(18)

One verifies that in this calculation scheme, the universal interaction Hamiltonian is stable for \(u_1 > -1/2 \ln 2 \) only, so that there is a range of dipolar interaction strengths \(-1 < u_1 < -1/2 \ln 2\) for which the separate dots are stable against the formation of a dipolar charge distribution, whereas the coupled dots are not. Our exact calculation shows that such a result is incorrect. In Fig. 3 we compare the flow of Eq. (18) and the exact flow of Eq. (14) for the critical value of \(u_1 \). Although it is only in the range \(M \sim g \) that the renormalization group flow of Refs. 7–9 and the exact flow for the double-dot differ, the flow in the range \(M \sim g \) is crucial in determining the value of the interactions at which the universal interaction Hamiltonian becomes unstable.

Before concluding, we would like to make three remarks about the renormalization-group calculation presented here. First, the one-loop renormalization-group result (17) is exact in the large-\(g \) limit. This follows from the same arguments as used to establish the validity of one-loop renormalization group in the work of Murthy et al. Second, in the exact calculation performed here all flow of interaction parameters arises from the first, nonuniversal term in the wave function correlator (11), which is off diagonal in the wave function indices. This is opposite to the calculation of Refs. 7–9, where the flow arises from a universal and diagonal wave function correlator. Third, mathematically, the fact that the instability of the universal interaction Hamiltonian occurs precisely at \(u_1 = -1 \) is a consequence of the Lorentzian energy dependence of the first, nonuniversal term in the wave function correlator (11). A Lorentzian is generic for nonuniversal wave function correlations in both diffusive and ballistic quantum dots for which \(g_\Lambda \) and \(g \) in Eq. (11) are replaced by eigenfunctions and eigenvalues of the diffusion operator or the Perron-Frobenius operator, respectively, see, e.g., Ref. 6. It is because of this similarity that we believe that our calculational scheme, including our result for the critical interaction strength, extends to the general case.

We thank G. Murthy, R. Shankar, and H. Mathur for correspondence. This work was supported by the Cornell Center for Nanoscale Systems under NSF Grant No. EEC-0117770, by the NSF under Grant no. DMR 0086509, and by the Packard foundation.

\[1\] Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000).
\[12\] The same Hamiltonian describes a single quantum dot with moderate spin-orbit coupling in a magnetic field that breaks time-reversal symmetry, see I.L. Aleiner and V.I. Fal’ko, Phys. Rev. Lett. 87, 256801 (2001). In this case, the block structure in Eq. (2) refers to spin and the dipolar interaction in Eq. (3) represents the exchange interaction.
\[13\] We have omitted an interaction term proportional to \(\langle \hat{n}_1 + \hat{n}_2 \rangle (\hat{n}_1 - \hat{n}_2) \), which explicitly breaks the symmetry between the two dots. This interaction is found not to flow upon application of the renormalization-group scheme.